首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
在解决一些比较复杂的题目时 ,解题的途径不那么明朗 ,经常需要对问题进行转换 ,即从不同的角度去观察问题 ,产生新的联想 ,理出解题思路 .这种转换的思想常常表现为以下几种情况 .1 已知条件与问题结论的转换一些难度较大的题目 ,条件与结论之间的距离较远 ,条件一般不易直接用上 ,这时往往需要把条件向结论或把结论向条件推演、变换或转化 ,使二者沟通 ,建立联系 .这实际上也就是我们常说的 ,在探求解题思路时 ,交替使用分析与综合的思考方法 .例 1 若函数 f(x) =x2 -x +k ,且log2 f(a) =2 ,f(log2 a) =k(a≠ 1) .(1)求 f(log2 x)的最小…  相似文献   

2.
"构造法"解题,就是构造数学模型解决问题.在中学的数学竞赛和高考题目中,它的应用十分广泛,特别有些技巧性强的题目,学生往往手足无措,难于下手.本文举例说明"构造法"解题的几种思维途径,供参考一、构造函数例1已知函数f(x)=x~2+2x+alnx.当t≥1时,不等式f(2y-1)≥2f(t)-3恒成立,求实数a的取值范围.解析:不等式f(2f-1)≥2f(t)-3(?)2t~2-  相似文献   

3.
给定区间上函数恒成立问题的基本题型是:当m∈M时,F(m,n)>0(或<0或=0)恒成立,求n的取值范围.1利用一次函数的性质一次函数f(x)=ax+b(a≠0),根据一次函数性质,在[m,n]内恒有f(x)>0,等价于f(m)>0且f(n)>0;在[m,n]内恒有f(x)<0,等价于f(m)<0且f(n)<0.例1已知a∈[0,1]时,(a?1)log32x?6a log3x+a+1恒为正数,求实数x的取值范围.分析令2h(a)=(a?1)log3x?6a log3x+a+122=(log3x?6log3x+1)a?log3x+1.当a∈[0,1]时,h(a)>0恒成立,即233(0)0,log10,(1)0,6log20,h xh x???>>???????++>>∴?1相似文献   

4.
<正>抽象函数因题目中没有具体的解析式,解题难度很大。如果能利用题目的条件,联想学过的函数类型,构造出相应的函数模型,则可快速解答这类题目。一、根据定义域构造函数(1)定义域为(-∞,+∞)时,构造f(x)=kx+b(k≠0)或f(x)=ax~3+bx~2+cx+d(a≠0)。(2)定义域为(m,+∞)时,构造f(x)=log_a(x-m)。(3)定义域为(-∞,m)时,构造f(x)=  相似文献   

5.
1.已知f(x+y)=f(x)·f(y),且f(1)=2,求ff((21))+ff((32))+ff((34))+…+ff((22000065))的值.2.已知函数f(x)=log21(x2+2x+4),试比较f(-2006)与f(-2005)的大小.3.已知数列{an}的前n项和Sn=log12006(1+n),求a2006+a2007+…+a20062-1.4.已知a≠0,且sinx+siny=a,cosx+cosy=a,求(sinx+cosx)2006的值.5.求证:log321006+log222006+1log1672006<1.6.已知直线kx+(k+1)y-1=0与坐标轴所构成的直角三角形的面积为Sk,求S1+S2+…+S2006.参考解答1.取y=1,则f(x+1)=f(x)·f(1)=2f(x),即f(fx(+x)1)=2.所以ff((21))+ff((23))+f(4)f(3)+…+ff((22000065))=2+22…  相似文献   

6.
不单调是近几年的创新考点,题目往往以导数为载体,解题中分类讨论,转化思维,数形结合等思想方法有着广泛应用.为此特举例分析不单调问题的解题思路,供同学们学习时参考.题目(2009年浙江高考理科22题)已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1(k∈R).设函数p(x)=f(x)+g(x),若p(x)在区间(0,3)上不单调,求k的取值范围.思路1利用"p(x)在(0,3)上不单调p(x)在(0,3)上有极值点"直接求解.  相似文献   

7.
一、选择题1.设f:x→y=2x是A→B的映射,已知集合B={0,1,2,3,4},则A满足().A.A={1,2,4,8,16}B.A={0,1,2,log23}C.A{0,1,2,log23}D.不存在满足条件的集合2.已知函数f(x)=log2x(x>0),3x(x≤0),则f f41的值是().A.9B.91C.-9D.-913.设有两个命题:①关于x的不等式x2+2ax+4>0对于一切x∈R恒成立;②函数f(x)=-(5-2a)x是减函数.若上述两个命题有且只有一个为真命题,则实数a的取值范围是().A.(-2,2)B.(-∞,2)C.(-∞,-2)D.(-∞,-2]4.若f(x)=xx-1,则方程f(4x)=x的根是().A.21B.-21C.2D.-25.若定义在区间(-1,0)内的函数f(x)=log2a(x+1),满足f(x…  相似文献   

8.
学数学讲究思维的严密性.在教学中,我发现许多学生题目做错的原因不是因为方法不当,而是在解题过程中忽略了某些变量的取值范围.因此,在教学中应引导学生注意变量的范围,提高思维的严密性,下面举例说明.1注意函数定义域例1已知f(x)=2 log3x(1≤x≤9),求函数y=[f(x)]2 f(x2)的最  相似文献   

9.
构造法解题在近年高考、竞赛中时有出现常见的有构造函数、构造不等式、构造数列、构造几何图形等,本文将通过具体题目来说明. 一、构造函数 例 1 设f(x)=x3-6x2+9x-14,f(m)=1,f(n)=-1,求m+n的值。 解:f(x)=(x-2)3+3(x-2),∴(m-2)3+3(m-2)=1①(n-2)3+3(n-2)=-1②设F(x)=x3+3x易知F(x)=x3+3x是单调递增的奇函数,∴F(m-2)=-F(n-2)=F(2-n)∴m-2=2-n,∴m+n=4.  相似文献   

10.
联想是以已掌握的知识、方法为基础,有依据、有目的、有意识的思维活动,是创造性思维的基础,是产生奇思妙想的源泉.在教学活动中,教联想、学联想,培养学生的联想意识、联想习惯、联想能力等,是目前素质教育、创新教育的必然要求,更是主体性学习、研究性学习、创新学习的有效途径和方法.一、结构联想结构联想是指解题时,对具有相似结构特征的问题,由此及彼地联想到与之相关的知识和方法,从而找到解题的突破口.例1求函数f(x)=√x2+1+√(x-3)2+1的最小值.〔分析1〕观察函数f(x)的结构特征,联想到两点间的距离公式,于是原式化为f(x)=(x-0)2+(0-1…  相似文献   

11.
正化归思想是中学数学最基本的思想方法,是解题思想的灵魂,是解题的"心向".如何恰当地化归,乃是探索解题途径的中心环节.怎样恰当地化归问题呢?下面本文具体举例阐述.1.转换表达,化未知为已知将未知的问题向其等价的表达形式上转化,这是解题的基本方向.例1已知函数f(x)=x+1x+a2,g(x)=x3-a3+2a+1,若存在x1、x2∈[1a,a](a1)使得|f(x1)-g(x2)|≤  相似文献   

12.
由函数单调性的定义容易知道:(1)若函数f(x)在区间I上单调递增,且x1,x2∈I,则f(x1)x2;(3)若函数f(x)在区间I上单调,且x1,x2∈I,则f(x1)=f(x2)x1=x2;根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用的技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.下面举例说明这一思想在解题中的若干应用.一、求值例1设x,y为实数,且满足(x-1)3+1997(x-1)=-1(y-1)3+1997(y-1)=1,则x+y=.解:由已知条件,可得:(x-1)3+1997(x…  相似文献   

13.
从辩证思维出发 ,运用对立统一、相辅相成、相互转换等策略 ,解答数学题目时 ,及时灵活地转换思维角度 ,不但有利于我们更加全面地、本质地认识数学问题 ,激发创造性思维 ,而且能够帮助我们迅速找到合理的解题思路 .下面结合具体题目介绍几种常用的数学中的辩证思维 .一、特殊与一般即通过探索或利用一般性结论 ,来求解特殊性结论 ;反过来 ,从特殊性结论入手洞察一般性结论 .例 1 已知 f ( a +b) =f ( a) . f ( b) ,f ( 1) =2 ,则 f2 ( 1) +f ( 2 )f ( 1) +f2 ( 2 ) +f ( 4)f ( 3) +f2 ( 3) +f ( 6 )f ( 5) +f2 ( 4) +f ( 8)f ( 7) =.分析 …  相似文献   

14.
<正>一、题目与错解题目已知函数f(x)=(x2-ax+a)e2-ax+a)ex-xx-x2,a∈R.若函数f(x)在x=0处取得极小值,求a的取值范围.这是高三数学复习导数的应用时,学生作业中的一道题目.由于经验型思维错误及思维不严谨,学生中出现了以下两种错解.错解1因为f'(x)=(x2,a∈R.若函数f(x)在x=0处取得极小值,求a的取值范围.这是高三数学复习导数的应用时,学生作业中的一道题目.由于经验型思维错误及思维不严谨,学生中出现了以下两种错解.错解1因为f'(x)=(x2-ax+2x)e2-ax+2x)ex-2x,而f(x)在x=0处取得极小值,于是  相似文献   

15.
数学不仅是一门学科,更是一个知识的海洋,其中往往有令你耳目一新的事物,值得你去品味.题目:已知函数f(x)=log2(x+1)且a>b>c>0,则f(a)/a,f(b)/b,f(c)/c的大小关系是( ).  相似文献   

16.
有些题目的条件和结论非常相似 ,如果不加以认真分析对比 ,很可能会犯错误 ,下面举几个常见的例子加以说明 .例 1 已知函数f(x) =lg1+ 2 x + 4x·a3(其中a∈R) .( 1)若定义域为 ( -∞ ,1) ,求a的取值范围 .( 2 )当x∈ ( -∞ ,1)时 ,f(x)有意义 ,求a的取值范围 .辨析 问题 ( 1)中明确地指出了函数定义域就是 ( -∞ ,1) ,而问题 ( 2 )中只是说明 f(x)在 ( -∞ ,1)上有意义 ,隐含着 ( -∞ ,1)是其定义域的子集的意思 ,因此和问题 ( 1)不同 .解  ( 1)由1+ 2 x+ 4x·a3>0变形得122x + 12x +a >0 ,解得x 相似文献   

17.
中学数学的构造,是指在解题过程中,根据题目条件的结构特征,利用各种知识间的内在联系或形式上的某种相似性,有目的地构造特定的数学模型,从而把原命题转化为与之等价却又具备了某种被赋予特定意义的命题,通过对它的讨论而使原命题得到解决.构造是一种重要的思维方式,需要敏锐的观察,丰富的联想,灵活的构思,创造性的思维,它是中学数学思想的一朵奇葩,充满着创造的美.一、构造函数例1 已知:x,y,z是任意的三个实数,α,β,γ是一个三角形的三内角.求证:x2+y2+z2≥2xycosα+2yzcosβ+2zxcosγ.简析:此题直接证,比较困难,可考虑构造x的函数:f(x)…  相似文献   

18.
构造法就是根据某种需要,把题设条件或求解结论设想在某个模型上,通过对新设想模型的研究推出结论的解题思维方法.构造法解题能够打破常规、另辟蹊径,获得简捷、明快、精巧的解答.它是一种很重要的数学方法,其应用范围很广.加强这种训练,可以培养我们的创造思维能力和数学转化思想.下面举例说明. 一、构造函数 例 1 设f(x)=x4 ax3 bx2 cx d,其中 a、b、c、d为常数,若f(1)=1,f(2)=2,f(3)=3,则(f(4) f(0))/4的值为 (A)1(B)4(C)7(D)8  相似文献   

19.
不等式恒成立问题涉及面广,逻辑性强,许多同学对此类问题常常感到无从下手,下面举例分析,希望对同学们能够有所启迪. 1 利用一次函数的保号性 对于一次函数f(x)=kx+b,若f(m)>0,f(n)>0,则当x∈[m,n]时,f(x)>0. 例1 已知当1≤m≤2时,不等式(log2m-1)(log3x)2-61og2m·log3x+log2m+1>0恒成立,求x的取值范围. 解析 按常规思路,应将不等式视为关于log3x的二次函数1,这将难以求解.如果换一个思路,把log2m看作主元,log3x看作常量,则求解变得简单容易.  相似文献   

20.
数学思想是研究和解决数学问题和有关实际问题的基本指导思想.求解数学问题时,若能正确地运用数学思想,则可提高解题效率.本文举例介绍在求解三角问题时的常用数学思想.一、函数思想例1已知x3+sinx-2a=0,x∈[-π2,π2],4y3+sinycosy+a=0,y∈[-π4,π4],求sin(x+2y)的值.分析:从已知条件所具有的特征出发,可构造一个新的函数f(x)=x3+sinx,利用该函数的单调性,找出x与2y的关系,从而获得解答.解:令函数f(x)=x3+sinx,由x3+sinx-2a=0,得2a=x3+sinx=f(x).又由4y3+sinycosy+a=0,得2a=-8y3-2sinycosy=(-2y)3+sin(-2y)=f(-2y),∴f(x)=f(-2y),∵x,-2y…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号