首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一次函数f(x)在给定区间[m,n]上,有以下重要性质:(1)f(m)>0且f(n)>0f(x)>0在[m,n]上恒成立;(2)f(m)<0且f(n)<0f(x)<0在[m,n]上恒成立;(3)f(m)f(n)>0f(m)在[m,n]上恒正或恒负;f(m)f(n)<0f(x)在[m,n]上有正有负.以上性质成立的理由很简单,因为一次函数在任何闭区间上的图象都是一  相似文献   

2.
给定区间上函数恒成立问题的基本题型是:当m∈M时,F(m,n)>0(或<0或=0)恒成立,求n的取值范围.1利用一次函数的性质一次函数f(x)=ax+b(a≠0),根据一次函数性质,在[m,n]内恒有f(x)>0,等价于f(m)>0且f(n)>0;在[m,n]内恒有f(x)<0,等价于f(m)<0且f(n)<0.例1已知a∈[0,1]时,(a?1)log32x?6a log3x+a+1恒为正数,求实数x的取值范围.分析令2h(a)=(a?1)log3x?6a log3x+a+122=(log3x?6log3x+1)a?log3x+1.当a∈[0,1]时,h(a)>0恒成立,即233(0)0,log10,(1)0,6log20,h xh x???>>???????++>>∴?1相似文献   

3.
求不等式恒成立的参数的取值范围,是中学教学的难点之一,也是高考、数学竞赛的热点.下面就此问题的几种基本解法加以论述. 一、利用一次函数的性质 一次函数y=f(x)=ax+b在x∈[m,n]上恒大于零的充要条件是:{a>0,f(m)>0 或{a<0,f(n)>0或{f(m)>0,f(n)>0.(对于y=f(x) =ax+b恒小于零的条件亦可类似给出) 例1 若f(x)=(x-1)m2-6xm+x+1在区间[0,1]上恒为正值,求实数m的取值范围.  相似文献   

4.
解函数综合题时,经常能遇到含参数不等式恒成立问题,处理这样的问题对解题能力的要求比较高,本文介绍几种处理恒成立问题的几种主要方法.一、特殊值法若函数f(x)>0(或f(x)<0)对x∈A恒成立,则对特定的x0∈A,有f(x0)>0(或f(x0)<0)【例1】已知f(x)是定义在R上的函数,对于任意的m,n∈R,恒有f(m n)=f(m) f(n),当x>0时f(x)<0恒成立,且f(1)=-2.(1)判断f(x)的奇偶性和单调性;(2)求f(x)在[-3,3]上的值域.解:(1)在f(m n)=f(m) f(n)中,令n=-m得f(0)=f(m) f(-m),在此式中令m=0得:f(0)=f(0) f(0)则f(0)=0∴f(m) f(-m)=0即f(-m)=-f(m),对一切m∈R恒成立.…  相似文献   

5.
在数学解题中经常碰到有关恒成立问题 ,解决这类问题的方法尽管很多 ,但都离不开一些基本的数学思想 ,如化归思想、函数思想、方程思想等等 .笔者在平时的教学过程中对这类问题的解法作了一点归纳 ,供大家参考 .一、利用一次函数的性质对于一次函数 f(x) =kx +b,x∈ [m ,n] ,有f(x) >0恒成立 f(m) >0 ,f(n) >0 ;f(x) <0恒成立 f(m) <0 ,f(n) <0 .例 1  |p| <2 ,p∈R ,欲使不等式(log2 x) 2 +(p-2 )log2 x+1-p >0恒成立 ,求x的取值范围 .分析 若直接解关于log2 x的不等式 ,再由 p的取值范围求出x的取值范围 ,不仅化简过程十分繁杂 ,而…  相似文献   

6.
1.接近函数定义对于在区间[m,n]上有意义的两个函数f(x)与g(x),若对任意x∈[m,n]均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.  相似文献   

7.
<正>在近几年的高考题中,利用分类讨论法解一类与恒成立有关的求参问题屡次出现,此类求参问题有个共同的特征,即"在某区间上不等式恒成立,区间的端点或区间内的某一点使不等式对应的方程成立".笔者根据此类题目的特点,整理出了几类模型,供同仁参考.模型一函数f(x)中含参数r,且r∈U.在区间(a,b)上f(x)>0恒成立(或在区间[a,b)上f(x)≥0恒成立),且f(a)=0,则  相似文献   

8.
根据一次函数的图象及单调性,容易推得如下结论成立:一次函数f(x)=kx+b(k≠0),当x∈[m,n]时,1f(x)>0f(m)>0且f(n)>0;2f(x)<0f(m)<0且f(n)<0;3f(x)=0f(m)f(n)≤0.有些数学问题,可根据题意转化为关于某一变量的一次函数,应用上述结论求解,简捷、明了.例1对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求实数x的取值范围.解:不等式x2+px>4x+p-3即(x-1)p+x2-4x+3>0令f(p)=(x-1)p+x2-4x+3视它为关于p的一次函数,显然x≠1.由于0≤p≤4,所以由f(p)>0恒成立可得f(0)>0且f(4)>0,即f(0)=x2-4x+3>0f(4)=4(x-1)+x2-4x+3>0.解之得x<-1或x>3.例2…  相似文献   

9.
不等式的恒成立、能成立与恰成立问题是学生们非常容易混淆的问题,它们的意义和转化方法是不同的,本文结合例题介绍这三种问题的不同转化方法.一、恒成立问题不等式f(x)<λ在区间D上恒成立f(x)max<λ,不等式f(x)>λ在区间D上恒成立f(x)min>λ二、能成立问题在区间D上存在x使不等式f(x)<λ成立,即在区间D上f(x)<λ能成立f(x)min<λ在区间D上存在x使不等式f(x)>λ成立,即在区间D上f(x)>λ能成立f(x)max>λ.三、恰成立问题不等式f(x)<λ在区间D上恰成立函数y=f(x)在D上的值域是(-∞,λ).不等式f(x)<λ在区间D上恰成立函数y=f(x)在D上的值域…  相似文献   

10.
<正>一、单一函数类1.恒成立问题例1已知函数f(x)=ax~3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.(1)求f(x)的单调区间和极大值;(2)证明对任意x_1,x_2∈[-1,1],不等式|f(x_1)-f(x_2)|<4恒成立.分析本题是同一函数的最值问题,只需求出函数f(x)在[-1,1]上的最值(或范  相似文献   

11.
王魁兴 《中学数学月刊》2006,(4):46-46,47-49
一、选择题1.定义在R上的函数f(x)满足:f(-x)=-f(x+4),当x>2时,f(x)单调递增,当(x1-2)(x2-2)<0且x1+x2<4时,f(x1)+f(x2)的值().(A)恒小于0(B)恒大于0(C)可能为0(D)不确定2.定义在R上的函数f(x)满足:f(x+1)=12+f(x)-[f(x)]2,且f(-1)=12,则f(2 006)的值为().(A)-1(B)1(C)12(D)2 0063.函数f(x)=x2+ax+5,且f(x)=f(-4-x)对于x∈R恒成立,当x∈[m,0]时,f(x)最大=5,f(x)最小=1,则实数m的取值范围是().(A)(-∞,-2](B)[-4,0](C)[-4,-2](D)[-2,0]4.奇函数f(x)在[-1,1]上单调递增,且f(-1)=-1,函数f(x)≤t2-2at+1对于x∈[-1,1]恒成立,则当a∈[-1,1]…  相似文献   

12.
命题1 函数f(x)=ax+b在[m,n]上的值恒为正的充要条件是{f(m>0),f(n)>0。  相似文献   

13.
<正>一、与参数有关的区间上二次函数最值问题关于二次函数f(x)=ax2+bx+c(a≠0)在[m,n]上的最值问题,解答时可通过置放二次函数图象的对称轴或所给区间,截取相应区间的图象获得最值,主要类型有以下三种:1.区间确定,对称轴位置待定例1求函数f(x)=2x2+bx+c(a≠0)在[m,n]上的最值问题,解答时可通过置放二次函数图象的对称轴或所给区间,截取相应区间的图象获得最值,主要类型有以下三种:1.区间确定,对称轴位置待定例1求函数f(x)=2x2-2ax+1在[-1,1]上的最小值.  相似文献   

14.
一、变换主元法给定一次函数y=f(x)=ax b(a≠0),若y= f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于  相似文献   

15.
我们知道对于函数y=f(x)在定义域内的任意自变量x,若有f(-x)=-f(x)恒成立,则称该函数为奇函数;若有f(-x)=f(x)恒成立,则称该函数为偶函数.因为奇函数的图像关于原点对称,所以奇函数图像在原点的左右两侧的面积互为相反数,即在[-a,a]上连续的奇函数f(x)在该区间上的定积分为零,  相似文献   

16.
在高中数学中有一大类关于恒成立与能成立问题,解决此类问题可通过求函数的最值来解决.下面做简单的分析以供大家参考.1.恒成立问题若不等式f(x)>A在区间D上恒成立,则等价于在区间D上f(x)min>A;若不等式f(x)相似文献   

17.
知识点一:两个重要结论结论1:如果二次函数f(x)=ax2+bx+c在闭区间[m,n]上满足f(m)f(n)<0,那么方程f(x)=0在开区间(m,n)上有唯一解,即存在x1∈(m,n),使得f(x1)=0,方程f(x)=0的另一解x2∈(-∞,m)∪(n,+∞)。结论2:如果函数f(x)在区间[m,n]上的图像是连续不断的一条曲线,且满足f(m)f(n)<0,那么方程f(x)=0在开区间(m,n)上至少有一个解。注意点:结论1适用于二次函数,结论2适用于一般函数。  相似文献   

18.
题目:已知a,b是实数,函数f(x)=x2+ax,g(x)=x2+bx,f’(x)和g’(x)是f(x),g’(x)的导函数,若f’(x)g’(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.  相似文献   

19.
在近几年的高考中经常出现一类在新定义下的函数求解问题,不少同学感到困难较多. 现举例来说明这类问题的求解策略. 一、运用函数的最值求解例1 对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在  相似文献   

20.
1.定义在R+上的函数f(x)满足如下条件:①存在x0>1,使得f(x0)≠0;②对任意的实数b,有:f(xb)≠bf(x).求证:(1)对一切x>1,均有f(x)≠0;(2)当a>2时,有f(a-1)f(a+1)<[f(a]2.2.已知函数f(x)是在(0,+∞)上每一点处均可导的函数,若xf2(x)>f(x)在x>0时恒成立.(1)求证:函数g(x)=f(x)/x在(0,+∞)上是增函数;(2)求证:当x1>0,x2>0时,有f(x1+x2)>f(x1)+f(x2);(3)已知不等式1n(1+x)-1且x≠0时恒成立,求证:1/221n22=YSW2006.12编辑/刘鹏原创题库43  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号