首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用凸函数理论,证明了Neuman-Sàndor平均的Schur凸性和Schur几何凸性.作为应用,建立了两个新的不等式链:M(a,b)≥M(3a+b/4,a+3b/4)≥A(a,b)和M(a,b)≥M(a3/4b1/4,a1/4b3/4)≥G(a,b).  相似文献   

2.
柯西不等式:(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)(当且仅当b1/a1=b2/a2=b3/a3=…=bn/an时,等号成立)是一个重要的不等式,其结构和谐、形式优美、应用广泛,是高考考查的热点.本文举例说明柯西不等式在求值、求最值、证明不等式及求参数的范围等方面的应用.  相似文献   

3.
利用初等微分学比较了单参数平均与对数和指数平均的几何组合,发现了使得双向不等式Jp(a,b)1/2-3)/2]和所有a,b>0且a≠b成立的p的最大值和q的最小值,其中Jp(a,b),L(a,b)和I(a,b)分别表示a与b的p-次单参数平均、对数平均和指数平均.  相似文献   

4.
在证明等比性质时 ,巧妙地运用了设 k方法 ,收到了出奇制胜的效果 .设 k法的实质是借用 k为参数 ,建立已知与未知之间的联系 ,达到解题目的 .现列举实例 ,介绍 .一、用设 k法求值例 1  ( 1999年天津市初二数学竞赛试题 )已知a + b - cc =a - b + cb =- a + b + ca ,求( a + b) ( b + c) ( c + a)abc 的值 .解 :设 a + b - cc =a - b + cb =- a + b + ca =k,则 a + b =( k + 1) c, 1a + c=( k + 1) b, 2b + c =( k + 1) a, 3由 1+ 2 + 3,得 ( k - 1) ( a + b + c) =1,∴ k =1或 a + b + c =0 .当 k =1时 ,a + b =2 c,b + c =2 a,c+ a =2 b,…  相似文献   

5.
对于某些不等式问题,直接求解,困难重重.如果巧妙地引进参数,发挥其桥梁作用,则可峰回路转.本文通过深入挖掘现行高中数学教材所蕴藏的丰富内涵,反复考虑学生的接受能力,特给出三类不等式的有关命题及其应用,希望能给读者一些启迪。定理1a,b∈R+,则有ba2≥22λλa?b(λ为参数,且λ>0),当且仅当aλ=b时等号成立.*证明因为22(λa)+(λb)≥2λa?λb,当且仅当λ=ab时等号成立.两边同除以2λb可得ba2≥22λλa?b.定理证毕.例1设1a,2a,…,na是各不相同的正整数,证明:22322123naaaan+++L≥1+21+31+L+n1.证明在定理1中,令λ=1,则ba2≥2a?b.从而122…  相似文献   

6.
圆锥曲线是解析几何中的重要内容,与圆锥曲线有关的轨迹问题也是教学的一个难点.本文给出圆锥曲线弦的定比分点的轨迹方程的几个通式,并说明它的应用.命题1设斜率为k的直线与椭圆b2x2+a2y2=a2b2(a>0,b>0)相交于A、B两点,动点M满足AM=λMB(λ为常数),则点M的轨迹方程是2(22)2(1)(2222b x+a ky+λ4?λb x+a y?a2b2)(b2+a2k2)=0.证明设点M(x,y),直线AB的参数方程为x0=x+t,y0=y+kt(t为参数),代入椭圆方程并整理得:(b2+a2k2)t2+2(b2x+a2ky)t+b2x2+a2y2?a2b2=0.设点A(x1,y1),B(x2,y2)对应的参数分别为t1,t2,则:22222t1+t2=?2(b x+a ky)/(b+a…  相似文献   

7.
引入参数a,b,应用权函数的方法,建立Hardy型积分不等式的若干推广式,并证明某些推广式的常数因子是最佳的.  相似文献   

8.
正一、利用平面向量的数量积运算求解参数值平面向量数量积是平面向量中的一大有力武器.利用向量的数量积及线性运算来建立参数的方程,进而求其参数,是求解与向量有关的参数取值的一种重要手段.例1(2013年高考全国新课标Ⅰ卷理科卷第13题)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t=____.解由b·c=0,可知b·[ta+(1-t)b]=0,即ta·b+  相似文献   

9.
在初中代数中,我们学习了用代入消元法和加减消元法解二元一次方程组的方法.在此基础上,又学习了三元一次方程组的解法以及参数方程的解法.但随着元数的增加,参数的增多,学生在解方程组上的困难也越来越大,特别是对含参方程组的求解.但应用齐次线性方程组有非零解的判定定理来解这类方程组,将会带来很大的便利.1行列式的概念和齐次线性方程组有非零解的判定定理(1)方程组:111222,,a x b y ca x b y c???++==是一个二元一次方程组.我们把方程组中未知数前面的系数列成表:1122a ba b??????,这个表叫做方程的系数矩阵.系数a1,b1,a2,b2叫做这个…  相似文献   

10.
以Hilbert不等式为特例的Hilbert型不等式是分析学的重要不等式.近代;由于改进了权系数方法及应用了参量化思想,使该类不等式的研究得到深入发展.该文引入多参数,应用实分析的方法以估算权函数,在有限区间(a,b)(1〈a〈b〈∞)建立若干类Hilbert型积分不等式及其等价式.作为应用,还考虑了一些特殊核的情形.  相似文献   

11.
设a和b是两个不同的实数,如果一个矩阵的元素为a或b,我们称这样的矩阵为(a,b)矩阵。根据a、b的不同取值分三种情形给出了n阶非奇异对称(a,b)矩阵中元素a的可能个数。  相似文献   

12.
在[a,b]=1,但[b,c]〉1,且[a,c]〉1的前提下,根据方程的系数a,b,c所满足的条件,给出一类方程ax^m-by^n=c无正整数解[x,y,m,n]的判别法,证明了该类方程Pillai猜想成立.  相似文献   

13.
在[a,b]=1,但[b,c]>1,且[a,c]>1的前提下,根据方程的系数a,b,c所满足的条件,给出一类方程axm-byn=c无正整数解[x,y,m,n]的判别法,证明了该类方程Pillai猜想成立.  相似文献   

14.
利用初等微分学比较了对数平均与平方根平均和调和平方根平均的凸组合,发现了使得双向不等式aS(a,b)+(1-a)(H)(a,b)<L(a,b)<βS(a,b)+(1-β)(H)(a,b)对所有a,b>0且a≠b成立的a的最大值和β的最小值,其中S(a,b)=√(a2,b2)/2,(H)(a,b)=√2ab√a2+b2和L(a,b)=(a-b)/(loga-logb)分别表示二个正数a与b的平方根平均、调和平方根平均和对数平均.  相似文献   

15.
16.
本文推广了如下两个关于对称式的不等式 :x2 yz +y2 zx +z2 xy ≥x2 +y2 +z2   (x ,y ,z∈R ,x≥y≥z >0 ) ,ab(a +b) +bc(b +c) +ca(c +a)≤ 32 (a +b) (b +c) (c +a) ,(a ,b ,c∈R+ )  相似文献   

17.
对群论定理“设a,b为群(G,·)之二元.如 1)a·b=b·a,2)(o(a),o(b))=1,则o(a·6)=o(a)×o(6)″进行推广.首先,仅变更2)为2′)(o(a),o(b))=d,得到定理1:设a,b为群(G,·)之二元,如 1)n·6=b·a.2′)(o(a),o(6))=d,则o(a·6)=o(a)/d×o(b)/d×q,q∈N且1≤q≤d;其次,不仅变更2)为2″)(o(ai),a(aj))=1,i≠j,i,j=1,2,…,n,且变更1)为1′)ai·aj=aj·ai,i≠j,i,j=1,2,…,n,得到定理2:设a1,a2,…,an为群(G,·)之n(≥2)元,  相似文献   

18.
本文给出了形如 (m个+b) (n个+d)的多位数的乘积的捷算法 ,其中 ,a ,c∈ { 1,2 ,3,4 ,5,6 ,7,8,9} ,b ,d∈Z ,9|ac .  相似文献   

19.
对于任意的实数p,两正数a与b的幂平均定义如下:Mp(a,b)=(ap 2+bp)1p p≠0槡ab p={0,以下将证明:对所有a,b〉0,m∈(0,32)有如下的不等式:1)当m∈(0,32)时,M log2log3(m+2)-log2(a,b)≤23 Hm(a,b)+13 G(a,b)≤M 3(m4+2)(a,b);2)当m∈[23,+∞)时,M 43(m+2)(a,b)≤32 Hm(a,b)+31 G(a,b)≤M log3(mlo+g22)-log2(a,b)。其中当且仅当a=b时,等号成立,同时参数23(m+2),l og3(m l+o g22)-log2对于不等式是最优的临界值。给予两正数a,b的海伦平均,几何平均分别如下:Hm=a+bm++m 2槡ab,G(a,b)=槡ab。  相似文献   

20.
首先研究如下类型的边值问题:y″=f(t,y,y′)(a〈t〈b)、py(a)-qy(b)=a,ry'(a)-sy'(b)=B的微分不等式与解的存在性,然后,利用所得的结果,研究二阶拟线性微分方程的边值问题{εy″=f(t,y)y'+g(t,y)、y(a)=y(b),ry'(a)-sy'(b)=B的奇异摄动现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号