首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.与等差数列的性质结合例1 已知数列{an}为等差数列,若a1 a2 a3 a4=3,an-3 an-2 an-1 an=21,且Sn=48,求n的值. 分析先将第二个条件“倒序”,再将两式相加,目的是用等差数列的性质:am an=ap aq<=>m n=p q(其中m,n,p,q∈N ),从而减少计算量。解依题意,有 a1 a2 a3 a4=3 an an-1 an-2 an-3=21将以上两式相加,得  相似文献   

2.
“+、-、×、÷”是数学中最基本的运算,但在数列中还是一种特殊的解题技巧,能有效地解决数列中的数学问题,并使其过程显得简捷明快.下面试从4个方面加以说明.一、“+”的技巧等差中项性质,数列求和中的倒序相加,求通项中的累加等,都包含了“+”的技巧.例1在等差数列an中,a1+a2+a3=15,an+an-1+an-2=78,Sn=155,求n.解由a1+an=a2+an-1=a3+an-2,将该6项相加,得a1+a2+a3+an+an-1+an-2=3(a1+an)=15+78,∴a1+an=31,∴Sn=n(a1+an)2=n×312=155,∴n=10.例2求和Sn=C1n+2C2n+3C3n+…+nCnn.解Sn=0C0n+1C1n+2C2n+3C3n+…+nCnn,Sn=nCnn+(n-1)Cn-1n…  相似文献   

3.
教材(全日制普通高级中学教科书(必修)《数学》第一册上,人民教育出版社)中利用等差数列的性质a1+an=a2+an-1=…=an+a1,通过“倒序相加”的方法推导等差数列的前n项和公式Sn=n(a1+an)/2.本文现给出等差数列前n项和的一个构造性求法,及构造法在数列求和中的一些应用。  相似文献   

4.
一、选择题(每小题5分)1.等差数列{an}中,已知a1≠0,S10=4S5,则适合an=9a1的n值是()A.2B.3C.4D.52.在等比数列{an}中,已知a1=1,公比q∈R,且q≠1,an=a1·a2……a10,则n等于()A.44B.45C.46D.473.首项为81,公差为-7的等差数列{an}中,与0最接近的项是()A.a11B.a12C.a13D.无法确定4.{an}为等比数列,且S3=3a3,则公比q值为()A.-12B.12C.1或-12D.-1或125.已知数列{an}是等差数列,a1+a2+a3=15,an+an-1+an-2=78,其前n项和Sn=155,则n=()A.15B.12C.10D.86.在等比数列{an}中,a1+a2+…+a5=3,a6+a7+…+a10=9,则a11+a12+…+a15=()A.27B.36C.40D.…  相似文献   

5.
高中《数学》(试验修订本·必修 )第一册(上 )第 13 2页例 4为“已知 Sn 是等比数列{an}的前 n项和 ,S3 ,S9,S6 成等差数列 ,求证a2 ,a8,a5成等差数列 .”文 [1]将其推广为 :已知 Sn 是等比数列 {an}的前 n项和 ,公比 q≠ 1,则 ak,ak+ 2 p,ak+ p成等差数列的充要条件是 Sk+ 1 ,Sk+ 1 + 2 p,Sk+ 1 + p成等差数列 (k,p∈ N* ) .文 [2 ]又将其推广为 :已知 Sn 是等比数列 {an}的前 n项和 ,公比 q≠ 1,则 ak,al,am 成等差数列的充要条件是 Sk+ p,Sl+ p,Sm + p成等差数列 (k,l,m∈ N* ,p∈ Z,且 k+ p,l+ p,m+ p≥ 1) .受其启发 ,本文将其作…  相似文献   

6.
李天红 《中学理科》2007,(11):13-16
数列是高考的重点内容,一般有一道大题和一道小题,分值共20分左右.考生由于没有掌握好数列的解题规律,失掉了不该丢的分数.其实只要我们牢记“三和五两九通”,把握住数列常用的通性通法,拿下数列是不成问题的.一、“三和五两九通”“三和”指的是三种求和方法:倒序相加法、错项相消法、裂项相消法.“五两”指的是:(1)两个基础:等差、等比数列的定义、通项公式、求和公式;(2)两个灵活:如果m n=p q(m、n、p、q∈N*),等差数列有am an=ap aq,等比数列有am·an=ap·aq;(3)两个分类:an=S1(n=1)Sn-Sn-1(n≥2,n∈N*)和Sn=na1(q=1)a1(1-qn)1-q(q≠…  相似文献   

7.
等差数列{an}具有如下性质:若m,n,P,q∈N*,且m+n=p+q,则a_n+a_n=a_p+a_q.利用等差数列的通项公式a_n=a_1+(m-1)d,n∈N*容易证明.直接用这一性质解题可化难为易,化繁为简.  相似文献   

8.
1.方程思想例1等差数列{an}的前n项和记为Sn.已知a10=30,a20=50(Ⅰ)求通项an;(Ⅱ)若Sn=242,求n.解:(Ⅰ)由an=a1+(n-1)d,a10=30,a20=50,得方程组(?)a1+9d=30,a1+19d=50.解得a1=12,d=2.所以an=2n+10.(Ⅱ)由Sn=na1+(n(n-1))/2d,Sn=242得方程12n+(n(n-1)/2×2=242.解得n=11或n=-22(舍去).2.函数思想例2已知等差数列{an}中,a1≠0,前n项和为Sn,且S1=S2005,S9=Sn,求n的值.解:因为点P(n,Sn)在函数y=d/2x2+(2a1-d)/2x的图象上,且S1=S2005所以抛物线的对称轴为x=1003又S9=Sn,所以(n+9)/2=1003,即n=19973.整体思想例3等差数列{an}的前n项和为Sn,且S10=100,S100=10,求S110.解:S100-S10=a11+a12+…+a100=(a11+a100)/2×90又S100-  相似文献   

9.
<正>数列求和是数列的重要内容之一,是高考必考内容.除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面就谈谈这类问题的解决方法和技巧.一、分组求和法如果数列的通项公式可分为几个等差、等比或常见的数列,这时就要分别求和,然后再相加.譬如数列{cn=an+bn},其中数列{an}、{bn}分别是等差、对比数列,前n项和Sn=(a1+b1)+(a1+b2)+…+(an+bn)=(a1+a2+…+an)+(b1+b2+…+bn).例1推测数列112,214,318,4116,…的前n项和Sn.解Sn=112+214+318+…+n+12()n=(1+2+3+…+n)+  相似文献   

10.
<正>数列求和是数列的重要内容之一,是高考必考内容.除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面就谈谈这类问题的解决方法和技巧.一、分组求和法如果数列的通项公式可分为几个等差、等比或常见的数列,这时就要分别求和,然后再相加.譬如数列{cn=an+bn},其中数列{an}、{bn}分别是等差、对比数列,前n项和Sn=(a1+b1)+(a1+b2)+…+(an+bn)=(a1+a2+…+an)+(b1+b2+…+bn).例1推测数列112,214,318,4116,…的前n项和Sn.解Sn=112+214+318+…+n+12()n=(1+2+3+…+n)+  相似文献   

11.
众所周知,等差数列{an}的通项公式an=a1+(n-1)d可变形写成:an=dn+(a1-d),这个式子的几何意义是点列An(n,an)(n∈N+)在直线y=dx+(a1-d)上.同样,等差数列{an}的前n项和公式sn=na1+n(n2-1)d可变形为:snn=a1+n-12d=2dn+(a1-2d),它也可看成是点列An(n,snn)在直线y=2dx+(a1-2d)上.于是得到以下两个结论:结论1等差数列{an}的通项公式an=a1+(n-1)d,则点(1,a1),(2,a2),(3,a3),…,(n,an)…共线.结论2等差数列{an}的前n项和sn=na1+n(n2-1)d,{sn}为等差数列的前n项和组成的数列,则点(1,s11),(2,s22),(3,s33),…,(n,snn)…共线.例1已知等差数列{an},a4=…  相似文献   

12.
由等差数列的通项公式不难推出如下性质 :若{an}是等差数列 ,am、an、ap、aq 分别是该数列的第m、n、p、q项 ,且m n =p q,则am an=ap aq。又显然 ,1 n =k (n 1 -k) ,故由上述性质可知 :a1 an=ak an 1-k,k∈N ,且k≤n将这一结果代入等差数列前n项和公式中 ,便有Sn=n(a1 an)2 =n(ak an 1-k)2 。等差数列前n项和的这一形式 ,具有非常好的解题功能。下面略举数例说明之。例 1  ( 1 995年全国高考题 ) 等差数列 {an}、{bn}的前n项和分别为Sn 与Tn,若 SnTn=2n3n 1 ,则limn→∞anbn等于 (   )(A) 1   (B) 6/ 3   (C) 23   (…  相似文献   

13.
设 {an}是以 q为公比的正项等比数列 ,则有以下两个性质 :性质 1  n a1 a2 … an=n-2 m am +1 am +2 … an-m(n >2 m)证明 :n a1 a2 … an =n a1 .a1 q… a1 qn-1 =n an1 qn( n-1 )2 =a1 qn-1 2 .设 m 2 m)的几何平均数 .记数列前 n项的积为∏n,则 (1)式可以写成n ∏n =n-2 m ∏n-m∏m(2 )注 :…  相似文献   

14.
1.分组某此既非等差,又非等比的数列,可拆开为等差数列、等比数列或常见的数列,分别求和. 例1 数列{an}的前n项和Sn=2an-1,数列{bn}满足b1=3,bn+1=an+bn(n∈N*). (1)证明数列{an}为等比数列; (2)求数列{bn}的前n项和Tn. 解(1)由Sn=2an-1,n∈N*,所以  相似文献   

15.
数列求和问题是高考的热点问题,它的基本求解方法是公式法,即利用公式(Sn=n(a1+an)/2=na1+n(n-1)/2d)和(Sn={na1,q=1,a1(1-qn)/1-9,q≠1)求等差数列、等比数列的前n项和.但针对一些非常规数列的求和问题,公式法不太适用,要通过其他方法进行针对性解题.  相似文献   

16.
现行高中《数学》(必修 )第一册 (上 )第3 .5节例 4是 :已知Sn 是等比数列 {an}的前n项和 ,S3,S9,S6 成等差数列 ,求证a2 ,a8,a5成等差数列 .这是一道难得的好题 ,具有很好的研究价值 .一、例题引申引申 1:若Sn 是公比q≠ 1的等比数列{an}的前n项和 ,a2 ,a8,a5成等差数列 ,则S3,S9,S6 成等差数列 .证明 :设等比数列 {an}的首项为a1 (a1 ≠ 0 ) .∵a2 ,a8,a5成等差数列∴ 2a8=a2 +a5.即 :2a1 q7=a1 q +a1 q4∴ 2q6 =1+q3,∴q3+q6 =2q9.又q≠ 1,∴S3+S6 =a1 ( 1-q3)1-q +a1 ( 1-q6 )1-q=a1 [2 -(q3+q6 ) ]1-q=2a1 ( 1-q9)1-q =2S9.∴S3,…  相似文献   

17.
背景 :本文将高一数学新教材第一册(上 )第 1 4 2页复习参考题第 4题 :“有两个等差数列 {an},{bn},a1 + a2 +… + anb1 + b2 + b+… + bn=7n+ 2n+ 3=f ( n) ,求 a5b5.”进行深化延拓 .得到了等差数列与等比数列的两个新的性质 .定理 1 有两个等差数列 {an},{bn},其前 n项和 Sn 与 Sn′之比为 Sn Sn′=f( n) ,则 ( 1 ) ambm=f( 2 m- 1 ) ;( 2 ) am+ am+1 bm+ bm+1=f( 2 m) .证明  ( 1 )∵ {an) ,{bn}均为等差数列 ,∴ 2 am=a1 + a2 m- 1 ,∴ S2 m- 1 =a1 + a2 +… + a2 m- 1=a1 + a2 m- 1 2 ( 2 m- 1 ) =2 ( m- 1 ) am.同理 S2 m- 1 …  相似文献   

18.
一、方程思想. 例1 等差数列{an}的前n项和记为Sn.已知a10=30,a20=50. (Ⅰ)求通项an; (Ⅱ)若Sn=242,求n. 解析(Ⅰ)由an=a1+(n-1)d,a10=30, a20=50,得方程组(?)a1+9d=30,a1+19d=50. 解得a1=12,d=2.所以an=2n+10. (Ⅱ)由Sn=na1+(n(n-1))/2d,Sn=242 得方程12n+(n(n-1)/2×2=242. 解得n=11或n=-22(舍去). 二、函数思想.  相似文献   

19.
等比数列求和公式为Sn=a1(11--qq n)(q≠1),有时用此公式证明不等式可简化证明过程.将数列知识与不等式知识相融合,既可培养学生思维的灵活性和创造性,又可简化思路、优化解题过程.一、直接公式法例1求证:1+21!+31!+41!+…+n1!<2(n≥2,n缀N).证明1+12!+31!+41!+…+n1!<1+12+212+123+…+21n-1=1×(11--121n)2=2-12n-1<2(n≥2,n缀N).故原不等式成立.小结本题直接运用等比数列求和公式,起到了立竿见影的效果.二、求和公式的逆用例2已知等差数列{an}和等比数列{bn}中a1=b1=a,a2=b2=b(b>a>0).求证:当n>2且n缀N时,bn>an.证明an=a+(n-1)(b-a)…  相似文献   

20.
我们知道数列通项 an 具有如下两个常见的基本变形式 :差式变形式 :an=(an- an-1 ) (an+ 1 - an-2 ) +…+(a2 - a1 ) +a1 . 1商式变形式 :an=anan-1· an-1 an-2·…· a3 a2· a2a1·a1 . 21式可以应用于求递推关系式为 :an+ 1 =an+g(n)型数列的通项公式 ;2式可以应用于求递推关系式为 :an+ 1 =f(n)× an型数列的通项公式 .而对求递推关系式为 :an+ 1 =kan+g(n) (k≠ 1 ) ( )型的通项公式就失效 .近期有杂志刊文介绍对 an+ 1 =kan+g(n) (k≠1 )型的通项公式求法 .不外乎两种方法 :其一是将an+ 1 =kan+g(n) (k≠ 1 )转化为 :an- h(n) =k{ an…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号