首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

2.
一、等式与不等式的转化例1若正数a,b满足ab=a+b+3,则ab的取值范围是______.分析为了求ab的取值范围,只要将原等式转化为不等式即可.解运用不等式a+b≥2ab姨,原等式可化为不等式.∵ab=a+b+3≥2ab姨+3,∴ab-2ab姨-3≥0.又ab姨>0,∴ab姨≥3,即ab≥9.例2已知不等式a2+b2+c2+4≤ab+3b+2c,求正整数a,b,c.分析本题所给的是不等式,而求的是a,b,c,故应将原不等式转化为3个等式,才能解决问题.解∵不等式的两边是整数,∴将a2+b2+c2+4≤ab+3b+2c配方得(a-b2)2+3(b2-1)2+(c-1)2≤0.则有a-b2=0,b2-1=0,c-1=0,∴原不等式有唯一的一组解a=1,b=2,c=1.二、常…  相似文献   

3.
正基本不等式:1/2(ab)≤(a+b)/2(其中a≥0,b≥0)当且仅当a=b时等号成立,当1/2(ab)=(a+b)/2,此时即1/2(1/2a-1/2b)2=0,可看出a=b.a=b一方面可看作不等式成立的特殊情况,另一方面也可看作恒等式成立的条件.基本不等式等号成立的条件有两个:①两数非负,②两数相等,这就说明基本不等式等号成立对条件有着较强的要求.反过来如果基本  相似文献   

4.
<正>本文先给出基本不等式的一个等价变形,再举例说明它的广泛应用.结论已知a、b、λ∈R,且b(a+b)> 0,则有ab≥-λ2+(λ+1)2+(λ+1)2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2+λ2+λ2b2b2≥2λab,得a2≥2λab,得a2≥2λab-λ2≥2λab-λ2b2b2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2b].再两边同时  相似文献   

5.
我们知道,对于任意的实数a和b,有a2+ b2≥2ab(1)当且仅当a=b时取等号,若ab >0,在(1)的两边同除以ab,即得a/b+b/a≥2(2),当且仅当a=b时取等号. 在(1)中,若令u=a2,v=b2,显然u≥0, v≥0。则有,当且仅当u=v时取等号,现在我们利用这些重要不等式来解一  相似文献   

6.
<正> 我们知道,由(a-b)2≥0得a2+b2≥2ab,当a=b时,不等式变为等式.在解某些与方程(组)有关的问题时,可根据a2+b2≥2ab构造相应的不等式,然后运用等号成立的条件揭示出新的数量关系,从而找到解题途径.  相似文献   

7.
<正>在学习过程中,同学们会经常遇到不等式问题,经过归纳总结以及分析感悟,我觉得对于高中阶段的不等式问题,只要掌握了基本不等式的性质及解法,其他问题都会迎刃而解。1.基本不等式:(1)a,b∈R时,a2+b2+b2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2+b2+b2/2,当且仅当a=b时取等号。  相似文献   

8.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

9.
命题 已知a>0,>0,求证√a2+b2/2≥a+b/2≥√ab≥2ab/a+b,当且公当a=b时等号成立. 这是一个均值不等式链.  相似文献   

10.
<正>题目已知a,b,c>0且ab+bc+ca=3,证明∑cyc(a+b)3[2(a+b)(a2+b2)]13≥12①这是一道分式不等式的证明题,突破点自然聚焦在每个分式项的变形与放缩上.笔者经过思考,利用基本不等式(a+b)2≤2(a2+b2)与(a+b)2≥4ab获得几种证明.  相似文献   

11.
在中学数学教学研究的期刊上常出现下述平均值不等式: 设以a,b∈(0,+∞),则a2+b2/a+b≥√a2+b2/2≥a+b/2≥√ab≥2ab/a+b. 本文将给出这五个平均值不等式之间的“问距”大小关系. 命题 设a,b∈(0,+∞),记△1=a2+b2/2-√a2+b2/2,△2=√a2+b2/2-a+b/2,△3=a+b/2-√ab,△4=√ab-2ab/a+b,则△3≥△1≥△2≥△4.等号当且仅当a=b时成立.  相似文献   

12.
题目 (2017年高考全国Ⅱ卷文科数学第23(Ⅱ)题)已知a>0,b>0,a3 +b3=2.证明:a+b≤2. 证法1不等式的变形. 因为a>0,b>0,a3 +b3=2, 所以a+b>0,且(a-b)2≥0. 从而(a+b)(a-b)2≥0,即有 a2b+ab2≤a3 +b3=2. 不等式两边同乘以3得 3a2b+3ab2≤6.不等式两边同加a3+b3得 a3 +b3 +3a2b+3ab2≤8,即 (a+b)3≤8,所以a+b≤2. 证法2反证法.  相似文献   

13.
众所周知,a+b=2A=a,A,b成等差数列,其中A叫做a和b的等差中项.由不等式的基本性质及基本不等式,不难得到如下若干性质:(证明较简单,略.) (1)当a+b=2A时,可设a=A-d,b=A+d; (2)A≥ab~(1/ab);(a,b∈R+,当且仅当a=b时取等号.) (3)1/A2≤1/ab;  相似文献   

14.
数学竞赛题是课本基础知识和技能技巧的结晶。大家熟知基本不等式是:(1)a~2+b~2≥2ab(a、b∈R);(2)a+b≥2(ab)~(1/2)(a、b∈R~+)。由它们可以推出如下变形式:  相似文献   

15.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

16.
<正>众所周知,基本不等式指的是:对任意实数a、b,有不等式a2+b2≥2ab成立,当且仅当a=b时等号成立.我们将其称为实数型的基本不等式.有趣的是,将基本不等式中的实数a、b类比为向量a、b,也有向量形式下的基本不等式成立:a2+b2≥2a·b(*)  相似文献   

17.
不等式的证明是国内外数学竞赛中的热点问题 ,尽管这些不等式的形式各异 ,但很多不等式的证明却可以用两个基本不等式而巧妙地得到解决 .本文所述的基本不等式为 :a + b≥ 2 ab(a,b∈ R+ )及a1+ a2 +… + ann ≥ n a1a2 … an(ai ∈ R+ ) .下面看一些具体例子 .1 用 a + b≥ 2 ab(a,b∈ R+ )证明竞赛中不等式  例 1 设 x1,x2 ,x3,… ,xn均为正数 ,求证 :x21x2+ x22x3+ x23x4+… + x2n- 1xn+ x2nx1≥ x1+ x2+… + xn.(1 984年全国高中数学联赛题 )证明 :由基本不等式 a + b≥ 2 ab(a,b∈R+ )得x22x1+ x1≥ 2 x2 ,x23x2+ x2 ≥ 2 x3,… …  相似文献   

18.
由不等式a2 + (λb) 2 ≥ 2λab(a,b∈R ,λ为参数 ) ,得a2 ≥ 2λab-λ2 b2 .由此得到如下一个推论 :若b >0 ,则a2b ≥ 2λa-λ2 b. ( )对于参数λ的任一实数值 ,不等式 ( )总是成立的 ,当且仅当λ =ab 时 ,取等号 .值得重视和有趣的是应用这个不等式可以简捷、巧妙地证明一类分式不等式 .现举例说明 .例 1 设xi >0 (i =1 ,2 ,… ,n) ,求证 :∑ni=1x2 ixi+1≥ ∑ni=1xi(xn+1 =x1 ) .证明 由xi >0及 ( ) ,得x2 ixi+1≥ 2λxi-λ2 xi+1 .∴∑ni=1x2 ixi+1≥ ∑ni=1(2λxi-λ2 xi+1 )=(2λ -λ2 ) ∑ni=1xi.取λ=1 ,原不等式得证 .例 2 设…  相似文献   

19.
高中教材中的基本不等式(a b)/2≥ab~(1/ab)(a≥0,b≥0)是证明不等式时经常要用到的,取等号的条件是“a=b”,我们称之为“元等”。若对于a b=p(定值)当且仅当a=b=p/2(定值)时,ab~(1/ab)才取得最大值。利用这一结论,我们可以证明一类不等式:  相似文献   

20.
《中学数学教学》2 0 0 2年第 6期有奖解题擂台( 5 8)中 ,杨先义老师提出如下猜想 :设a >0 ,b >0 ,c>0 ,a +b +c=1 ,则1b+c2 +1c +a2 +1a +b2 ≥2 74①ab +c2 +bc +a2 +ca +b2 ≥ 94②本文指出 ,猜想不等式①不成立 ,不等式②成立。在①式中 ,令a =0 6,b=0 3 6,c =0 0 4,得左边 =3 41 9455 1 5 2 8<2 74=右边 ;故不等式①不成立。下面证明不等式②成立 ,并修正①式。运用Cauchy不等式 ,得[a(b +c2 ) +b(c +a2 ) +c(a +b2 ) ]( ab+c2 +bc+a2 +ca +b2 )≥ (a +b +c) 2 =1 ,所以  ab +c2 +bc+a2 +ca +b2 ≥1ab +bc +ca +a2 b +b2 c+c2 a。…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号