首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
一、要注意不等式成立的条件例1已知x,y缀R+,且1x+4y=1,求x+y的最小值.错解∵x,y∈R+,∴0<1x·4y≤眼12穴1x+4y雪演2=14,即xy≥16.∴x+y≥2xy姨≥216姨=8,∴x+y的最小值是8.分析上面解法中,连续进行了两次不等式变形:x+y≥2xy姨与2xy姨≥216姨,且这两个不等式中的等号不能同时成立.因为第一个不等式当且仅当x=y时等号成立,第二个不等式当且仅当1x=4y时等号成立,即只有x=2且y=8时等号成立.因此,x+y不可能等于8.正解∵1x+4y=1,∴x+y=(x+y)·穴1x+4y雪=yx+4xy+5≥2×yx·4xy姨+5=9.上式当且仅当yx=4xy,即y=2x时等号成立.将1x+4y=1与y=2x联立,…  相似文献   

2.
在应用不等式解数学题时,常因对不等式条件未加重视导致错解,本文就对常见不等式错解进行举例分析. 例1 已知,xy都是正数,且2/1/1xy+=,求xy+的最小值. 错解 ∵21,,1,xyRxy++=且 ∴2122xyxy+?即212xy, ∴8xy.又2xyxy+? ∴2842xy+?. ∴xy+的最小值是42. 分析 在2122xyxy+持?取“=”号的充要条件是2xy=,而在2xyxy+持腥 ?”号的充要条件是xy=与2xy=矛盾. 正解 ()(2/1/)xyxyxy+=++ 21/2/xyyx=+++, ∵,,xyR+∴222xyyx+? ∴322xy+?, 当且仅当2/1/1,/2/xyxyyx+==即22,12xy=+=+时, “=”号成立. ∴xy+的最小值是322+. 例2 已知2222221,abcxyz++=++…  相似文献   

3.
一不等式性质应用致错例1 a∈[π/4,π/2],1≥sinα且sinα≥cosα则1与cosα的关系,是____. 错解:∵1≥sinα,sinα≥cosα, ∴由不等式的传递性知1≥cosα. 分析:α∈[π/4,π/2],显然cosα≠1.对于不等式的传递性:a>b,b>c(?)a>c.要正确理解带等号的情况.a≥b,b≥c(?) (两个等号同时成立).而由a>b,b≥c或a≥b,b>c均可得到  相似文献   

4.
在条件不等式的应用中,学生由于不注意条件不等式中变量的范围,经常做错了还发现不了错误.这是我们在解不等式问题中要引起注意的.  相似文献   

5.
不等式是中学数学教学的难点,也是多年来高考的热点,尤其是解不等式,我们在解不等式时,常常会不知不觉的犯一些不易察觉的错误,请看下面一个例子。  相似文献   

6.
一、不等式性质的误用 在利用不等式的性质解题时,一定要注意不等式的前提条件,否则极易出现解题错误.  相似文献   

7.
在数学的学习过程巾,我们经常会遇到一些似是而非的问题,这些问题往往是我们对某螳概念或公式的理解存在一监模糊的认识,从面造成一些表面看起来正确而实际上是错误的判断,使得我们的思维走入了一个个误区.下面针对在学习不等式过程中,思维上陷入的一些误区作一列举和剖析,以期在解题中得到一些警示,远离这些误区.  相似文献   

8.
正利用均值不等式求函数最值简捷明了,方便易行,常常可收到事半功倍的效果,深为同学们所喜爱.但如果不注意限制条件,也常常致错.本文就利用不等式求最值中常见错误及纠错心得作归类分析,使学生从纠错中进一步领悟均值不等式,进而培养学生数学思维的周密性和深刻性.一、忽略"同为正的条件"导致错误  相似文献   

9.
初学一元一次不等式,有些同学由于对基本概念和基本性质掌握不熟练,因而在解一元一次不等式时常常出现错误.现剖析几例如下:例1解不等式:3(1-x)<2(x+9).错解去括号,得3-3x<2x+18.移项,得-3x-2x<18-3.合并同类项,得-5x<15.两边同除以-5,得x<-3.分析上述解法误用了不等式的性质:不等式的两边同乘(或除)以同一个负数,不等号的方向要改变.此题两边同除以-5时,应改变不等号的方向,正确答案应是x>-3.例2解不等式:错解不等式两边同乘以12,得3(2x-1)-4(x-2)≤2(4x+3)-1.去括号,得6x-3…  相似文献   

10.
徐兰 《高中生》2013,(2):22-24
恒成立问题是数学中的一个常见问题,此类问题经常与参数的范围联系在一起,在高考中频频出现,是高考的一个难点,同时也是一个热点,因为它涉及的知识面广,综合性强,数学语言抽象,所以学生在解决问题时很容易出错,下面结合部分模拟题来探究一下学生在解答该类问题时的易错点。充分暴露错误的思维过程,使同学们认识到出错的原因,以此来引起同学们的注意。  相似文献   

11.
数学教学倡导有意义学习,即立足理解知识的学习,而完整的学习过程包括理解知识、保持知识和运用知识三个环节.在高中不等式学习中,学生出现解题错误便是在完整的学习过程中出现了漏洞.把学生作业、练习、试卷中出现的不等式典型的错解、错误作为教学的素材,通过对学生错解、错误的辨析,就可有效地帮助学生弄清出错的根本原因,从而深刻理解所学数学知识和方法的本质属性,循序渐进地学习.  相似文献   

12.
由于不少同学对不等式的概念和性质理解不深,在解不等式时常出现一些错误.举例剖析如下,望同学们引以为戒. 例1 命题“若a相似文献   

13.
由于定势思维的束缚,同学们往往把解方程的一整套方法原封不动地搬到解不等式上,因而造成错解,现以2002年中考题为例说明之.  相似文献   

14.
徐兰 《高中生》2013,(6):22-24
恒成立问题是数学中的一个常见问题,此类问题经常与参数的范围联系在一起,在高考中频频出现,是高考的一个难点,同时也是一个热点.因为它涉及的知识面广,综合性强,数学语言抽象,所以学生在解决问题时很容易出错.下面结合部分模拟题来探究一下学生在解答该类问题时的易错点,充分  相似文献   

15.
在处理不等式问题时,同学们往往会忽视一些问题,导致解题错误.下面就结合实例对解决不等式问题的过程中常见的错误进行剖析.  相似文献   

16.
一元一次不等式与不等式组及解法、应用是初中数学的重点内容之一.也是中考所要考查的重要内容之一.同学们由于对概念、性质的理解不清或对问题的考虑不周密。往往会出现各种错误.结合教学实际。下面列举几种常见的解题错误进行分析。希望能引起同学们的注意.  相似文献   

17.
同学们在解一元一次不等式问题时,常常因性质不清或考虑不全而出现错解.现举例分析如下,供同学们参考.  相似文献   

18.
同学们在解一元一次不等式问题时,常常因性质不清或考虑不全而出现错解.现举例分析如下,供同学们参考.  相似文献   

19.
题目 一玩具厂用于生产的全部劳力为450个工时,原料为400个单位,生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元。在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫总售价尽可能高。请你用你所学过的数学知识分析,总售价是否能达到2200元?  相似文献   

20.
文[1]中的例7(3)的解答是一个典型错误.现摘抄原文如下:例7写出下列命题的否定:(3) 1/(x~2 2x-3)≥0①解:(3)(?)p:1/(x~2 2x-3)<0②;因为p是1/(x~2 2x-3)>0或1/(x~2 2x-3)=0,(?)p是对p的否定,即为1/(x~2 2x-3)≤0且1/(x~2 2x-3)≠0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号