首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

2.
A new feedback controller architecture is presented for linear systems with a single I/O delay in the generalized internal model control (GIMC) framework. According to the doubly coprime factorization of these systems, traditional GIMC strategy is extended to linear systems with a single I/O delay. The distinguished feature of the control system architecture is that high tracking performance and good external disturbance rejection could be done separately by a nominal Smith predictor part and a finite dimensional conditional controller. First, a nominal Smith predictor part could be designed to deal with command tracking performance. Second, according to the left coprime factorization of the nominal controller, a finite dimensional conditional controller could be considered for external disturbance rejection, when the controlled plant should be assumed to be a square one. Finally, a simple design example is illustrated the effectiveness of the presented method.Finally, a simple design example is illustrated the effectiveness of the presented method.  相似文献   

3.
In the present study, a novel technique is suggested for the adaptive non-linear model predictive control based on the fuzzy approach in three stages. In the presented approach, in the first stage, the prediction and control horizons are obtained from a fuzzy system in each control step. Another fuzzy system is employed to determine the weight factors before the optimization stage of developing new controller. The proposed controller gives the parameters of the model predictive control (MPC) in each control step in order to improve the performance of nonlinear systems. The proposed control scheme is compared with the traditional MPC and Generic Model Control for controlling MED-TVC process. The performances of the three proposed controllers have been investigated in the absence and presence of disturbance in order to evaluate the stability and robustness of the proposed controllers. The results reveal that the novel adaptive controller based on fuzzy approach performs better than the two other controllers in set-point tracking and disturbance rejection with lower IAE criteria. In addition, the average computational time for the adaptive MPC exhibits a decline of 34% in comparison with the traditional MPC.  相似文献   

4.
To decrease the communication frequency between the controller and the actuator, this paper addresses the spacecraft attitude control problem by adopting the event-triggered strategy. First of all, a backstepping-based inverse optimal attitude control law is proposed, where both the virtual control law and the actual control law are respectively optimal with respect to certain cost functionals. Then, an event-triggered scheme is proposed to realize the obtained inverse optimal attitude control law. By designing the event triggering mechanism elaborately, it is guaranteed that the trivial solution of the closed-loop system is globally exponentially stable and there is no Zeno phenomenon in the closed-loop system. Further, the obtained event-triggered attitude control law is modified and extended to the more general case when the disturbance torque cannot be ignored. It is proved that all states of the closed-loop system are bounded, the attitude error can be made arbitrarily small ultimately by choosing appropriate design parameters and the Zeno phenomenon is excluded in the closed-loop system. In the proposed event-triggered attitude control approaches, the control signal transmitted from the controller to the actuator is only updated at the triggered time instant when the accumulated error exceeds the threshold defined elaborately. Simulation results show that by using the proposed event-triggered attitude control approach, the communication burden can be significantly reduced compared with the traditional spacecraft control schemes realized in the time-triggered way.  相似文献   

5.
In this paper, the target tracking control problem is investigated for an underactuated autonomous underwater vehicle (AUV) in the presence of actuator faults and external disturbances based on event-triggered mechanism. Firstly, the five degrees-of-freedom kinematic and dynamic models are constructed for an underactuated AUV, where the backstepping method is introduced as the major control framework. Then, radial basis function neural network (RBFNN) and adaptive control method are made full use of estimating and compensating the influences of uncertain information and actuator faults. Besides, the relative threshold event-triggered strategy is integrated into the tracking control to further reduce communication burden from the controller to the actuator. Moreover, through Lyapunov analysis, it is proved that the designed controllers guarantee that the tracking error variables of the underactuated AUV are uniformly ultimately bounded and can converge to a small neighborhood of the origin. Finally, the effectiveness and reasonableness of the designed tracking controllers are illustrated by comparative simulations.  相似文献   

6.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

7.
This paper is concerned with the problem of event-triggered dynamic output-feedback H control for networked control system with sensor and actuator saturations. The event-triggered scheme combined with sensor saturation is first introduced to judge whether the newly sampled signal should be transmitted to the dynamic output-feedback controller or not. Under this scheme, the concurrent closed-loop system is first modeled as a control system with an interval time-varying delay and nonlinear items. Through constructing the Lyapunov–Krasovskii functional and employing linear matrix inequality approach, sufficient conditions for H asymptotical stability are derived for the networked control system; furthermore, under the above stability condition, a dynamic output-feedback controller and the corresponding event-triggered parameters are co-designed through linear matrix inequality approach. Lastly, a numerical example is employed to prove the practical utility of this method.  相似文献   

8.
This paper is concerned with the reliable event-triggered H output control of nonlinear systems with actuator faults. A dynamic triggering scheme depending on system outputs is implemented to reduce the amount of communication transmissions, which is different from existing constant triggering thresholds. The parameters of actuator faults are estimated via observer state. To compensate for the fault effects on systems, the reliable controller parameters are adjusted along with the obtained estimations. By using some technical lemmas, new sufficient conditions for the closed-loop system to be asymptotically stable with prescribed H performance are formed in linear matrix inequalities. Lastly, simulations are implemented to demonstrate the validity of the proposed method.  相似文献   

9.
In this paper, the problem of adaptive tracking control is investigated for nonlinear systems with asymmetric actuator backlash. We assume that the nonlinearities of the systems are unknown and the external disturbances are bounded. First, the control input will be quantized by a hysteresis-type quantizer, which can reduce the communication rate of the control signal. Then, the asymmetric actuator backlash is approximated to a new model, and a novel adaptive controller with the quantizer is designed via an adaptive backstepping technique to guarantee all the signals of the closed-loop tracking error system are uniform ultimate boundedness. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed algorithm.  相似文献   

10.
This paper studies output feedback control of hydraulic actuators with modified continuous LuGre model based friction compensation and model uncertainty compensation. An output feedback adaptive robust controller is constructed which combines the adaptive control part and the robust control part seamlessly. The adaptive part is constructed to handle the parametric uncertainties existed in the model. The residuals coming from parameter adaption and the unmodeled dynamics are taken into consideration by the robust part. Since only the position signal is available, the velocity, pressure, and internal friction states are obtained by observation or estimation. The errors coming from observation and estimation are also dealt with the robust part. Furthermore, the convergence of the closed-loop controller–observer scheme is achieved by the Lyapunov method in the presence of parametric uncertainties only. Extensive comparative experiments performed on a hydraulic actuator demonstrate the effectiveness of the proposed controller–observer scheme.  相似文献   

11.
This paper investigates the controller design problem of cyber-physical systems (CPSs) to ensure the reliability and security when actuator faults in physical layers and attacks in cyber layers occur simultaneously. The actuator faults are time-varying, which cover bias fault, outage, loss of effectiveness and stuck. Besides that, some state-dependent cyber attacks are launched in control input commands and system measurement data channels, which may lead state information to the opposite direction. A novel co-design controller scheme is constructed by adopting a new Lyapunov function, Nussbaum-type function, and direct adaptive technique, which may further relax the requirements of actuator/sensor attacks information. It is proven that the states of the closed-loop system asymptotically converge to zero even if actuator faults, actuator attacks and sensor attack are time-varying and co-existing. Finally, simulation results are presented to show the effectiveness of the proposed control method.  相似文献   

12.
何宏  钱锋 《科技通报》2007,23(3):408-412
从隶属函数、控制规则、量化因子和比例因子等几个方面,详细介绍了遗传算法在模糊控制器中的应用原理和发展概况,并根据目前遗传模糊逻辑控制器设计中存在的问题,提出了该领域今后的研究重点和发展趋势,为从事遗传算法及模糊逻辑研究的技术人员提供了参考。  相似文献   

13.
This paper is concerned with the image-based visual servoing (IBVS) control for uncalibrated camera-robot system with unknown dead-zone constraint, where the uncertain kinematics and dynamics are also considered. The control implementation is achieved by constructing a smooth inverse model for dead-zone-input to eliminate the nonlinear effect resulting from the actuator constraint. A novel adaptive algorithm, which does not require a priori knowledge of the parameter intervals of dead-zone model, is proposed to update the parameter values online, and the dead-zone slopes are not required the same. Furthermore, to accommodate the uncertainties of uncalibrated camera-robot system, adaptation laws are developed to estimate the uncertain parameters, simultaneously avoiding singularity of the image Jacobian matrix. With the full consideration of unknown dead-zone constraint and system uncertainties, an adaptive robust visual tracking control scheme together with dead-zone compensation is subsequently established such that the image tracking error converges to the origin. Based on a 3-DOF manipulator, simulations are conducted to verify the tracking performance of the proposed controller.  相似文献   

14.
In this paper, a novel event-triggered adaptive fault-tolerant control scheme is proposed for a class of nonlinear systems with unknown actuator faults. Multiplicative faults and additive faults are taken into account simultaneously, both of which may vary with time. Different from existing results, our controller fuses static reliability information and dynamic online information, which is helpful to enhance the fault-tolerant capability. With the aid of an event-triggering mechanism, an actuator switching strategy and a bound estimation approach, the communication burden is significantly reduced and the impacts of the actuator faults as well as the network-induced error are effectively compensated for. Moreover, by employing the prescribed performance control technique, the system tracking error can converge to a predefined arbitrarily small residual set with prescribed convergence rate and maximum overshoot, which implies that the proposed scheme is able to ensure rapid and accurate tracking. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

15.
This paper develops an adaptive actuator failure compensation scheme for control of a class of nonlinear multi-input–multi-output systems with redundant actuators subject to uncertain failures. The design method is to estimate the failure pattern parameters and the failure signal parameters first, and then use the parameter estimates to construct the adaptive failure compensation controller, the control law calculation is done simultaneously with parameter estimation without explicit failure detection. Closed-loop signal boundedness and asymptotic output tracking, despite the actuator failure uncertainties, are ensured analytically and verified by simulation results from its application to attitude control of a near space vehicle dynamic model.  相似文献   

16.
This paper presents an active fault tolerant control (FTC) for doubly fed induction generator (DFIG) with actuator fault and disturbance using Takagi–Sugeno (TS) fuzzy model. The control structure has two parts: fault and disturbance estimation part and FTC part. First, a TS fuzzy model is used to describe the DFIG system. Using a special linear transformation, the original system is decoupled into three independent subsystems: state subsystem without fault and disturbance, disturbance subsystem without fault, and fault subsystem without disturbance. By solving linear matrix inequalities (LMIs), a TS fuzzy observer is designed for the state subsystem without fault and disturbance. Second, estimations of faults and disturbance are obtained using the other subsystem models. Third, an active FTC scheme is developed to reduce the effect of disturbance and actuator faults. Finally, the performance of the proposed FTC is tested for a wind turbine system based on DFIG with actuator faults and disturbance. The simulation results demonstrate that the new FTC scheme makes possible to obtain an efficient fault and disturbance estimation and to reduce the peak current in the transient process.  相似文献   

17.
Previously proposed adaptive fuzzy sliding mode control (AFSMC) and adaptive fuzzy sliding mode observer (AFSMO) methods are mixed and extended for the case of affine systems in which the input gain matrix is state-dependent, non-diagonal and non-positive definite. The proposed Extended AFSMCO (E-AFSMCO) method is then applied for position control of a Stewart Manipulator (SM), whose parameters are strongly state-dependent and complex and not suitable for practical control purposes. A robust observer-based control method which can work with a simplified model of the plant, and at the same time can preserve the stability and performance of the overall complex system is of great need. In this study, the SM dynamic model is simplified by removing the dynamic effects of the legs and the neglected terms are considered as un-modeled dynamics, for which the upper bound of the uncertainty is progressively estimated using the proposed adaptation rules. The final controller is comprised of a fuzzy controller in parallel with a robust switching controller. The second Lyapunov theorem is used to prove the closed-loop asymptotic stability. The proposed E-AFSMCO method is verified numerically and experimentally, depicting the effectiveness of the method for real-time industrial applications.  相似文献   

18.
This article studies adaptive prescribed performance tracking control problem for a class of strict-feedback nonlinear systems with parametric uncertainties and actuator failures. Firstly, in order to compensate the multiple uncertainties and eliminate the influence of actuator failure, a new adaptive tracking controller based on first-order filter technology will be proposed, which simplifies the algorithm design process. Then, by introducing an asymmetric state transition function, the transient and steady performances of the output tracking error are both constrained such that the predetermined performance control goal is achieved. Moreover, to reduce the communication burden from the controller to the actuator, the event-triggered mechanism is designed, and there will be no Zeno phenomenon. Based on Lyapunov stability theory, it is strictly proved that output signal can track the reference signal and all the signals of the closed-loop system are bounded. Finally, a simulation example is performed and the results demonstrate effectiveness of the proposed strategy.  相似文献   

19.
In this paper, a constrained control scheme based on model reference adaptive control is investigated for the longitudinal motion of a commercial aircraft with actuator faults and saturation nonlinearities. Actuator faults and constraints are both important factors adversely affecting the stability and performance of flight control systems. An adaptive adjustment law based on Lyapunov function is utilized to adjust the fault-tolerant control law. Both additive and multiplicative faults are considered in the designed controller to deal with the three types of actuator faults: locked in place, loss of effectiveness, and bias. Moreover, different techniques are implemented in the basic and fault-tolerant controller to anti-windup. Proofs for the stability of the two modified controllers which improve the performance of control system operating in the presence of actuator faults and saturations are proposed. Finally, a numerical example of the anti-windup fault-tolerant controller for a commercial aircraft is demonstrated. The stability and performance improvements can be accrued with the presented fault-tolerant control scheme.  相似文献   

20.
In this paper, a distributed control protocol is presented for discrete-time heterogeneous multi-agent systems in order to achieve formation consensus against link failures and actuator/sensor faults under fixed and switching topologies. A model equivalent method is proposed to deal with the heterogeneous system consists of arbitrary order systems with different parameters. Based on graph theory and Lyapunov theory, stability conditions to solve formation consensus problem are developed for the underlying heterogeneous systems with communication link failures. In order to tolerate actuator/sensor faults, a distributed adaptive controller is proposed based on fault compensation. The desired control is designed by linear matrix inequality approach together with cone complementarity linearisation algorithm. After applying the new control scheme to heterogeneous systems under the directed topologies with link failures and faults, the resulting closed-loop heterogeneous system is validated to be stable. The effectiveness of the new formation consensus control strategy and its robustness are verified by simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号