首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A finite-time non-fragile state estimation algorithm is discussed in this article for discrete delayed neural networks with sensor failures and randomly occurring sensor nonlinearity. First, by using augmented technology, such system is modeled as a kind of nonlinear stochastic singular delayed system. Then, a finite-time state estimator algorithm is provided to ensure that the singular error dynamic is regular, causal and stochastic finite-time stable. Moreover, the states and sensor failures can be estimated simultaneously. Next, in order to avoid the affection of estimator’s parameter perturbation, a finite-time non-fragile state estimation algorithm is given, and a simulation result demonstrates the usefulness of the proposed approach.  相似文献   

2.
《Journal of The Franklin Institute》2019,356(17):10593-10607
This paper investigates the problem of a multi-rate networked system estimation with considering random and malicious packet losses. Three different rates are used: system sampling rate, measurement updating rate and estimation updating rate. Thus, the network energy can be saved. Since the plant and filtering are connected via network channel, the data packet losses unavoidably happen. In order to study the combination of the random and malicious packet losses, the probabilistic characterization for the link failures is applied, which leads to a stochastic estimation error system. The almost surely exponentially stability criteria is applied to guarantee this stochastic system stable. Finally, a cloud-aided vehicle suspension system is applied to verify the theoretical finding.  相似文献   

3.
In this paper, a novel adaptive control scheme is investigated based on the backstepping design for a class of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays. The radial basis function neural networks are used to approximate the unknown nonlinear functions obtained by using Ito differential formula and Young?s inequality. The unknown time-varying delays and the unmodeled dynamics are dealt with by constructing appropriate Lyapunov–Krasovskii functions and introducing available dynamic signal. It is proved that all signals in the closed-loop system are bounded in probability and the error signals are semi-globally uniformly ultimately bounded (SGUUB) in mean square or the sense of four-moment. Simulation results illustrate the effectiveness of the proposed design.  相似文献   

4.
In this paper, the state estimation problem is studied for a class of discrete-time stochastic complex networks with switched topology. In the network under consideration, we assume that measurement outputs can be got from only partial nodes, besides, the switching rule of this network is characterized by a sequence of Bernoulli random variables. The aim of the presented estimation problem is to develop a recursive estimator based on the framework of extended Kalman filter (EKF), such that the upper bound for the filtering error convariance is optimized. In order to address the nonlinear functions, the Taylor series expansion is utilized and the high-order terms of linearization errors are expressed in an exact way. Furthermore, by solving two Ricatti-like difference equations, the gain matrix can be acquired at each time instant. It is shown that the filtering error is bounded in mean square under some conditions with the aid of stochastic analysis techniques. A numerical example is given to demonstrate the validity of the proposed estimator.  相似文献   

5.
This paper focus on the distributed fusion estimation problem for a multi-sensor nonlinear stochastic system by considering feedback fusion estimation with its variance. For any of the feedback channels, an event-triggered scheduling mechanism is developed to decide whether the fusion estimation is needed to broadcast to local sensors. Then event-triggered unscented Kalman filters are designed to provide local estimations for fusion. Further, a recursive distributed fusion estimation algorithm related with the trigger threshold is proposed, and sufficient conditions are builded for boundedness of the fusion estimation error covariance. Moreover, an ideal compromise between fusion center-to-sensors communication rate and estimation performance is achieved. Finally, validity of the proposed method is confirmed by a numerical simulation.  相似文献   

6.
In this paper, an iterative learning control strategy is presented for a class of nonlinear pure-feedback systems with initial state error using fuzzy logic system. The proposed control scheme utilizes fuzzy logic systems to learn the behavior of the unknown plant dynamics. Filtered signals are employed to circumvent algebraic loop problems encountered in the implementation of the existing controllers. Backstepping design technique is applied to deal with system dynamics. Based on the Lyapunov-like synthesis, we show that all signals in the closed-loop system remain bounded over a pre-specified time interval [0,T]. There even exist initial state errors, the norm of tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity and the learning speed can be easily improved if the learning gain is large enough. A time-varying boundary layer is introduced to solve the problem of initial state error. A typical series is introduced in order to deal with the unknown bound of the approximation errors. Finally, two simulation examples show the feasibility and effectiveness of the approach.  相似文献   

7.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

8.
《Journal of The Franklin Institute》2019,356(17):10335-10354
This paper is devoted to investigate the designs of the event-based distributed state estimation and fault detection of the nonlinear stochastic systems over wireless sensor networks (WSNs). The nonlinear stochastic systems as well as the filters corresponding to the multiple sensors are represented by interval type-2 Takagi–Sugeno (T–S) fuzzy models. (1) A new type of fuzzy distributed filters based on event-triggered mechanism is established corresponding to the nodes of the WSN. (2) The overall stability and performance, that is mean-square asymptotic stability in H sense, of the event-driven fault detection system is analyzed based on Lyapunov stability theory. (3) New techniques are developed to cope with the problem of parametric matrix decoupling for solving the distributed filter gains. (4) Finally, the desired event-based distributed filter matrices are designed subject to the numbers of the fuzzy rules and a series of matrix inequalities. A simulation case is detailed to show the effectiveness of the presented event-based distributed fault detection filtering scheme.  相似文献   

9.
This paper addresses the problem of adaptive fault estimation and fault-tolerant control for a class of nonlinear non-Gaussian stochastic systems subject to time-varying loss of control effectiveness faults. In this work, time-varying faults, Lipschitz nonlinear property and general stochastic characteristics are taken into consideration in a unified framework. Instead of using the system output signal, the output distribution is adopted for shape control. Both the states and faults are simultaneously estimated by an adaptive observer. Then, a fault tolerant shape controller is designed to compensate for the faults and realize stochastic output distribution tracking. Both the fault estimation and the fault tolerant control schemes are designed based on linear matrix inequality (LMI) technique. Satisfactory performance has been obtained for a numerical simulation example. Furthermore the proposed scheme is successfully tested in a case study of particle size distribution control for an emulsion polymerization reactor.  相似文献   

10.
This paper is concerned with the adaptive control problem for a class of linear discrete-time systems with unknown parameters based on the distributed model predictive control (MPC) method. Instead of using the system state, the state estimate is employed to model the distributed state estimation system. In this way, the system state does not have to be measurable. Furthermore, in order to improve the system performance, both the output error and its estimation are considered. Moreover, a novel Lyapunov functional, comprised of a series of distributed traces of estimation errors and their transposes, has been presented. Then, sufficient conditions are obtained to guarantee the exponential ultimate boundedness of the system as well as the asymptotic stability of the error system by solving a nonlinear programming (NP) problem subject to input constraints. Finally, the simulation examples is given to illustrate the effectiveness and the validity of the proposed technique.  相似文献   

11.
A novel H filter design methodology has been presented for a general class of nonlinear systems. Different from existing nonlinear filtering design, the nonlinearities are approximated using neural networks, and then are modeled based on linear difference inclusions, which makes the structure of the desired filter simpler and parameter turning easier and has the advantages of guaranteed stability, numeral robustness, bounded estimation accuracy. A unified framework is established to solve the addressed H filtering problem by exploiting linear matrix inequality (LMI) approach. A numerical example shows that the filtering error systems will work well against bounded error between a nonlinear dynamical system and a multilayer neural network.  相似文献   

12.
This paper is concerned with the design of dissipative state observers for a family of time-delay nonlinear systems. The Dissipativity method, proposed by one of the authors for delay-free nonlinear systems, is extended here to a class of time-delay nonlinear systems. The design method consists in decomposing the time-delay estimation error dynamics into a time-delay linear subsystem and a time-varying memoryless nonlinearity, connected in a negative feedback loop. By using some storage functionals, both delay-independent and delay-dependent dissipativity criteria are derived in order to guarantee the exponential convergence property of the observer. The exponential stability of the estimation error is then ensured, assuming that the nonlinearity is dissipative with respect to a quadratic supply rate and the linear part is designed, through the observer gains, to be dissipative with respect to a complementary supply rate. The design conditions are formulated in terms of tractable bilinear (BMI’s) or linear matrix inequalities (LMI’s). An interesting advantage is that the proposed dissipative design extends and generalizes under a unified framework several methods available in the literature, since a wide diversity of nonlinearities can be considered. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

13.
This paper presents a decomposition based least squares estimation algorithm for a feedback nonlinear system with an output error model for the open-loop part by using the auxiliary model identification idea and the hierarchical identification principle and by decomposing a system into two subsystems. Compared with the auxiliary model based recursive least squares algorithm, the proposed algorithm has a smaller computational burden. The simulation results indicate that the proposed algorithm can estimate the parameters of feedback nonlinear systems effectively.  相似文献   

14.
In this paper, the centralized security-guaranteed filtering problem is studied for linear time-invariant stochastic systems with multirate-sensor fusion under deception attacks. The underlying system includes a number of sensor nodes with a centralized filter, where each sensor is allowed to be sampled at different rate. A new measurement output model is proposed to characterize both the multiple rates and the deception attacks. By exploiting the lifting technique, the multi-rate sensor system is cast into a single-rate discrete-time system. With a new concept of security level, the aim of this paper is to design a filter such that the filtering error dynamics achieves the prescribed level of the security under deception attacks. By using the stochastic analysis techniques, sufficient conditions are first derived such that the filtering error system is guaranteed to have the desired security level, and then the filter gain is parameterized by using the semi-definite programme method with certain nonlinear constraints. Finally, a numerical simulation example is provided to demonstrate the feasibility of the proposed filtering scheme.  相似文献   

15.
We consider the leader–follower consensus problem for a multi-agent system where information is exchanged only on a non-uniform discrete stochastic time domain. For a second-order multi-agent system subject to intermittent information exchange, we model the tracking error dynamics as a μ?varying linear system on a discrete stochastic time scale, where μ is the graininess operator. Based on a Lyapunov operator and a positive perturbation operator on the space of symmetric matrices, we derive necessary and sufficient conditions to design a decentralized consensus protocol. This protocol allows us to cast the mean-square exponential consensus problem within the framework of dynamic equations on stochastic time scales. We establish some theoretical results which allow for the computation of the control gain matrix which guarantees the mean-square exponential stability with a given decay rate for the error dynamics. To show the effectiveness of the theoretical results, some simulation and experimental results on multi-robot systems have been performed.  相似文献   

16.
A class of nonlinear systems is considered in this paper which contains multiple time-varying delays and additional disturbances. Motivated by a robust model-free state-feedback controller, an observer-based output-feedback controller is designed to achieve uniformly ultimately bounded tracking. A high-gain-like observer is designed to estimate the unmeasurable current states utilizing the delayed output, and the estimated states are further used to facilitate the development of the output-feedback controller. The control input is saturated to avoid the side effects resulting from the high-gain-like observer’s peaking phenomenon. Under some sufficient conditions, it is proved that the saturation of the controller will no longer take place after a specific time, and both the estimation error and the tracking error will be uniformly ultimately bounded. In the stability analysis, Lyapunov–Krasovskii functionals are implemented to alleviate the difficulties resulting from the delays. Relationships among the delays, the desired trajectories, and the maximal tolerable error are identified. Behaviors of the closed-loop system under different observation and control gains are also analyzed. A two-link revolute robotic arm is taken as an example to conduct a series of simulations, and the results show that the output-feedback controller can recover the performance of the corresponding state-feedback controller.  相似文献   

17.
In this paper, we consider the problem of mixed H and passivity control for a class of stochastic nonlinear systems with aperiodic sampling. The system states are unavailable and the measurement is corrupted by noise. We introduce an impulsive observer-based controller, which makes the closed-loop system a stochastic hybrid system that consists of a stochastic nonlinear system and a stochastic impulsive differential system. A time-varying Lyapunov function approach is presented to determine the asymptotic stability of the corresponding closed-loop system in mean-square sense, and simultaneously guarantee a prescribed mixed H and passivity performance. Further, by using matrix transformation techniques, we show that the desired controller parameters can be obtained by solving a convex optimization problem involving linear matrix inequalities (LMIs). Finally, the effectiveness and applicability of the proposed method in practical systems are demonstrated by the simulation studies of a Chua’s circuit and a single-link flexible joint robot.  相似文献   

18.
This article focuses on time delay switch (TDS) attacks on power networks subject to highly nonlinear and interconnection. T–S model is utilized to represent each nonlinear power subsystem in the network. In order to attenuate adverse impacts from TDS attacks, a novel control technique of estimation and compensation is proposed. Combined with the method of finite time boundedness (FTB), transient stability of power systems could be achieved. First, an augmented fuzzy observer is constructed to capacitate a synchronous estimation for system states and TDS attacks, which ensures that the estimation error is limited via the intersection operation of ellipsoids within a specified finite time interval. Then, a compensation technique is employed to attenuate the influence from TDS attacks. Finally, simulation results of a distributed power network show the efficacy of the proposed method against TDS attacks.  相似文献   

19.
This paper develops a novel observer design method for multi-motor web-winding system. Firstly, the multi-motor web-winding system is regarded as a synthetic system with several subsystems, where the dynamic model for each subsystem is given. Then, the nonlinear diffeomorphism transformation is introduced to obtain a transformed system with block triangular structure and the interconnections among the subsystems are allowed. Next, a decentralized high-gain observer with sliding mode is designed for the transformed system, based on which the estimation error dynamics can be got. Sufficient condition of asymptotic stability for estimation error dynamics is derived by the Lyapunov stability theory and the observer gain is obtained. After that, the observer for original multi-motor web-winding system is achieved via inverse transformation. Finally, the simulation and analysis are performed in the three-motor web-winding system to verify the effectiveness of the proposed observer.  相似文献   

20.
This paper focuses on the observer-based fault-tolerant control problem for the discrete-time nonlinear systems with the perturbation and the fault signals. First, the nonlinear term with perturbation is put into the local nonlinear part so that the nonlinear system with perturbation can be described as an interval type-1 (IT1) T-S fuzzy system. Then, based on the unknown input observer technology, the IT1 T-S fuzzy fault estimation (FE) observer scheme is presented to obtain the real-time FE information and decouple the local nonlinear part from the estimation error system, where the design complexity and the computational burden are reduced simultaneously. Second, based on the real-time FE information, an FE-based interval type-2 (IT2) T-S fuzzy fault-tolerant control scheme is presented to achieve the compensation for the influence of the fault signal and the stabilization for the system. Different from the traditional methods, a mixed design scheme, which is based on the IT1 T-S fuzzy fault estimation observer method and the IT2 T-S fuzzy fault-tolerant controller method, is proposed in this paper. This strategy can not only reduce the computational burden, but also obtain a less conservative result. Finally, the effectiveness of the mixed design approach is illustrated by an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号