首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
卢岚  乔利 《软科学》2006,20(1):16-19
着重研究了如何利用广义随机Petri网分析企业业务流程系统,并以某保险公司核保承保流程为例,运用广义随机Petri网对其进行了建模,通过求解模型的同构马尔可夫链,获得流程系统的主要性能指标,为重新设计企业的业务流程提供依据和支持。  相似文献   

2.
针对遗传算法工作流挖掘容易过早收敛且局部寻优能力较差,导致得到的解不理想的情况,提出了一种基于混合遗传方法的工作流挖掘算法。该算法采用因果矩阵映射流程实例作为工作流模型的编码,在遗传算法的选择操作阶段采用锦标赛策略与精英保留策略相结合,在交叉变异阶段运用混合自适应方法,并结合模拟退火思想,使解的质量有了明显的提高。仿真实验表明,该算法与基于简单遗传方法的工作流挖掘算法相比效率更高。  相似文献   

3.
In this paper, we develop two new model reference adaptive control (MRAC) schemes for a class of nonlinear dynamic systems that is robust with respect to an uncertain state (output) dependent nonlinear perturbations and/or external disturbances with unknown bounds. The design is based on a controller parametrization with an adaptive integral action. Two types of adaptive controllers are considered—the state feedback controller with a plant parameter identifier, and the output feedback controller with a linear observer.  相似文献   

4.
In this paper, the multiple model strategy is applied to the adaptive control of switched linear systems to improve the transient performance. The solvability of the adaptive stabilization problem of each subsystem is not required. Firstly, the two-layer switching mechanism is designed. The state-dependent switching law with dwell time constraint is designed in the outer-layer switching to guarantee the stability of the switched systems. During the interval of dwell time constraint, the parameter resetting adaptive laws are designed in the inner-layer switching to improve the transient performance. Secondly, the minimum dwell time constraint providing enough time for multiple model adaptive control strategy to work fully and maintaining the stability of the switched systems is found. Finally, the proposed switched multiple model adaptive control strategy guarantees that all the closed-loop system signals remain bounded and the state tracking error converges to zero.  相似文献   

5.
This paper develops a new dual ML-ADHDP method to solve the optimal consensus problem (OCP) of a class of heterogeneous discrete-time nonlinear multi-agent systems (MASs) with unknown dynamics and time delay. A hierarchical and distributed control strategy is used to transform the original problem into nonlinear model reference adaptive control (MRAC) problems and an OCP of virtual linear MASs. For the nonlinear MRAC problems, a new multi-layer action-dependent heuristic dynamic programming (ML-ADHDP) method is developed to overcome the unknown dynamics and neural network estimation errors, which has higher control accuracy. In order to solve the OCP of virtual linear MASs and improve the convergence speed, a new multi-layer performance index is proposed. Then the ML-ADHDP method is used to solve the coupled Hamiltonian–Jacobi–Bellman equation and obtain the optimal virtual control. Theoretical analysis proves that the original MASs can achieve Nash equilibrium, and simulation results show that the developed dual ML-ADHDP method ensures better convergence speed and higher control accuracy of original MASs.  相似文献   

6.
This paper investigates the mixed H and passive control problem for a class of nonlinear switched systems based on a hybrid control strategy. To solve this problem, firstly, using the Takagi–Sugeno (T–S) fuzzy model to approximate every nonlinear subsystem, the nonlinear switched systems are modeled as the switched T–S fuzzy systems. Secondly, the hybrid controllers are used to stabilize the switched T–S fuzzy systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. Thirdly, a new performance index is proposed for switched systems. This new performance index can be viewed as the mixed weighted H and passivity performance. Based on this new performance index, the weighted H control problem and the passive control problem for switched T–S fuzzy systems via the hybrid control strategy are solved in a unified framework. Together the multiple Lyapunov functions (MLFs) approach with the average dwell time (ADT) technique, new design conditions for the hybrid controllers are obtained. Under these conditions, the closed-loop switched T–S fuzzy systems are globally uniformly asymptotically stable with a prescribed mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the obtained results is illustrated by a numerical example.  相似文献   

7.
In this paper, we develop an approach for solving the problem of sliding mode decentralized adaptive state-feedback tracking with continuous control actions for a class of uncertain nonlinear dynamical systems. In addition to the traditional asymptotic zero error tracking specification in the sliding mode decentralized model reference adaptive control (MRAC) problem formulation, here an additional requirement is specified explicitly in the problem statement. The tracking objective is described by a set of admissible reference trajectories, called a performance tube. The input signal to the reference model, selected within specified bounds, is used as a design parameter. The best reference trajectory is found by solving an additional optimization problem whose criterion penalizes the variance of the control signal.  相似文献   

8.
Natural disasters such as earthquakes and strong winds will lead to vibrations in ultra-high or high-rise buildings and even the damages of the structures. The traditional approaches resist the destructive effects of natural disasters through enhancing the performance of the structure itself. However, due to the unpredictability of the disaster strength, the traditional approaches are no longer appropriate for earthquake mitigation in building structures. Therefore, designing an effective intelligent control method for suppressing vibrations of the flexible buildings is significant in practice. This paper focuses on a single-floor building-like structure with an active mass damper (AMD) and proposes a hybrid learning control strategy to suppress vibrations caused by unknown time-varying disturbances (earthquake, strong wind, etc.). As the flexible building structure is a distributed parameter system, a novel finite dimension dynamic model is firstly constructed by assumed mode method (AMM) to effectively analyze the complex dynamics of the flexible building stucture. Secondly, an adaptive hybrid learning control based on full-order state observer is designed through back-stepping method for dealing with system uncertainties, unknown disturbances and immeasurable states. Thirdly, semi-globally uniformly ultimate boundedness (SGUUB) of the closed-loop system is guaranteed via Lyapunov’s stability theory. Finally, the experimental investigation on Quanser Active Mass Damper demonstrates the effectiveness of the presented control approach in the field of vibration suppression. The research results will bring new ideas and methods to the field of disaster reduction for the engineering development.  相似文献   

9.
This paper develops a novel adaptive state tracking control scheme based on Takagi–Sugeno (T–S) fuzzy models with unknown parameters. The proposed method can deal with T–S models in a non-canonical form and allows the number of inputs to be less than state variables, which is more practical and has wider applications. The needed matching conditions for state tracking are relaxed by using a T–S fuzzy reference model to generate desired state reference signals. A new fuzzy estimator model is constructed whose states are compared with those of the T–S fuzzy model to generate the estimator state error which is used for the parameter adaptive law. Based on the Lyapunov stability theory, it has been proven that all the signals in the closed-loop system are bounded and the asymptotic state tracking can be achieved. The effectiveness of the proposed scheme is demonstrated through a magnetic suspension system and a transport airplane model.  相似文献   

10.
In classical model reference adaptive control (MRAC), the adaptive rates must be tuned to meet multiple competing objectives. Large adaptive rates guarantee rapid convergence of the trajectory tracking error to zero. However, large adaptive rates may also induce saturation of the actuators and excessive overshoots of the closed-loop system’s trajectory tracking error. Conversely, low adaptive rates may produce unsatisfactory trajectory tracking performances. To overcome these limitations, in the classical MRAC framework, the adaptive rates must be tuned through an iterative process. Alternative approaches require to modify the plant’s reference model or the reference command input. This paper presents the first MRAC laws for nonlinear dynamical systems affected by matched and parametric uncertainties that constrain both the closed-loop system’s trajectory tracking error and the control input at all times within user-defined bounds, and enforce a user-defined rate of convergence on the trajectory tracking error. By applying the proposed MRAC laws, the adaptive rates can be set arbitrarily large and both the plant’s reference model and the reference command input can be chosen arbitrarily. The user-defined rate of convergence of the closed-loop plant’s trajectory is enforced by introducing a user-defined auxiliary reference model, which converges to the trajectory tracking error obtained by applying the classical MRAC laws before its transient dynamics has decayed, and steering the trajectory tracking error to the auxiliary reference model at a rate of convergence that is higher than the rate of convergence of the plant’s reference model. The ability of the proposed MRAC laws to prescribe the performance of the closed-loop system’s trajectory tracking error and control input is guaranteed by barrier Lyapunov functions. Numerical simulations illustrate both the applicability of our theoretical results and their effectiveness compared to other techniques such as prescribed performance control, which allows to constrain both the rate of convergence and the maximum overshoot on the trajectory tracking error of uncertain systems.  相似文献   

11.
《Journal of The Franklin Institute》2023,360(14):10582-10604
In this paper, the optimal model reference adaptive control (MRAC) problem is studied for the unknown discrete-time nonlinear systems with input constraint under the premise of considering robustness to uncertainty. Through an input constraint auxiliary system, a new adaptive-critic-based MRAC algorithm is proposed to transform the above problem into the optimal regulation problem of the auxiliary error system with lumped uncertainty. In order to realize the chattering-free sliding model control for the auxiliary error system, an action-critic variable is introduced into the adaptive identification learning. In this case, the closed-loop control system is robust to the disturbance and the neural network approximation error. The uniformly ultimate bounded property is proved by the Lyapunov method, and the effectiveness of the algorithm is verified by a simulation example.  相似文献   

12.
In this research, a hybrid adaptive bionic fuzzy control strategy is developed for a class of complicated nonlinear multiple-input-multiple-output (MIMO) systems with dead-zone input. The first component of the bionic adaptive controller is a general phrase for tunning system parameters depending on the present state, and the second component is a trend-based compensation for adjusting the system parameters. This technique makes the system more intelligent and boosts its anti-interference capabilities. The stability and convergence are analyzed using the Lyapunov synthetic method, and thus the parameter restrictions of the MIMO system are provided. Finally, the strong anti-interference of the system is verified by the simulations.  相似文献   

13.
Due to the unknown system structure of the froth flotation process and frequent fluctuations in production conditions, design of control strategy is a challenging problem. As a result, manual operation is still widely applied in practice by observing froth image features. However, since the manual observation is subjective and the production conditions are time-varying, the manual operation cannot make decisions quickly and accurately. In this paper, a data-driven-based adaptive fuzzy neural network control strategy is developed to implement the automatic control of the antimony flotation process. The strategy is composed of fuzzy neural network (FNN) controllers, a data-driven model, and an on-line adaptive algorithm. The FNN is constructed to derive the control laws of the reagent dosages. The parameters of the FNN controllers are tuned by gradient descent algorithm. To obtain the real-time error feedback information, the data-driven model is established, which integrates the long short term memory (LSTM) network and radial basis function neural network (RBFNN). The LSTM network is utilized as a primary model, and the RBFNN is used as an error compensation model. To handle the challenges of the frequent fluctuations in the production conditions, the on-line adaptive algorithm is proposed to tune the parameters of the FNN controllers. Simulations and experiments are carried out in a real-world antimony flotation plant in China. The results demonstrate that the proposed adaptive fuzzy neural network control strategy produces better control performance than the other two existing methods.  相似文献   

14.
This paper focuses on the optimal control of a DC torque motor servo system which represents a class of continuous-time linear uncertain systems with unknown jumping internal dynamics. A data-driven adaptive optimal control strategy based on the integration of adaptive dynamic programming (ADP) and switching control is presented to minimize a predefined cost function. This takes the first step to develop switching ADP methods and extend the application of ADP to time-varying systems. Moreover, an analytical method to give the initial stabilizing controller for policy iteration ADP is proposed. It is shown that under the proposed adaptive optimal control law, the closed-loop switched system is asymptotically stable at the origin. The effectiveness of the strategy is validated via simulations on the DC motor system model.  相似文献   

15.
城市道路人行横道是除交叉口外的重要的交通冲突区域,协调人行横道处的机动车流和行人过街等非机动车流的行为冲突具有重要意义。针对目前人行横道行人过街组织方式存在的弊端,采用基于行人过街请求的主辅灯信号联动控制策略控制人行横道交通行为。首先提出了主辅灯信号系统的辅灯控制方法原理;其次研究基于行人过街请求和主灯控制器信号配时的信号控制策略,实现满足行人过街请求前提下的车辆通行最优化控制方法;最后设计一种行人过节请求的辅灯控制器,通过设计相应功能模块,实现辅灯信号控制策略。模拟实验方案结果表明:在不同信号状态下触发行人过街请求信息,辅灯控制策略模型能够准确输出的辅灯信号的配时方案,在实施该信号控制策略后,车辆通过交叉口和辅灯人行横道区域的通行效率明显增加。  相似文献   

16.
This paper studies a distributed average tracking problem of uncertain multiagent systems over directed graphs. The basic idea is to establish an appropriate reference model by introducing an adaptive control scheme. The output of the reference model is the average of multiple time-varying reference signals. This implies that the reference model partially solves the problem of distributed average tracking of directed graphs. Moreover, an appropriate control law is designed to make the output of the multiagent system with uncertain parameters approaches the average of the reference signals from the reference model. The feasibility of the proposed scheme is theoretically proved and the effectiveness of the scheme is verified through a simulation example.  相似文献   

17.
This article studies adaptive prescribed performance tracking control problem for a class of strict-feedback nonlinear systems with parametric uncertainties and actuator failures. Firstly, in order to compensate the multiple uncertainties and eliminate the influence of actuator failure, a new adaptive tracking controller based on first-order filter technology will be proposed, which simplifies the algorithm design process. Then, by introducing an asymmetric state transition function, the transient and steady performances of the output tracking error are both constrained such that the predetermined performance control goal is achieved. Moreover, to reduce the communication burden from the controller to the actuator, the event-triggered mechanism is designed, and there will be no Zeno phenomenon. Based on Lyapunov stability theory, it is strictly proved that output signal can track the reference signal and all the signals of the closed-loop system are bounded. Finally, a simulation example is performed and the results demonstrate effectiveness of the proposed strategy.  相似文献   

18.
This paper considers the control problem of spacecraft line-of-sight (LOS) relative motion with thrust saturation in the presence of unmodeled dynamics, external disturbance and unknown mass property. By using skew-symmetric property, reference trajectory generator and anti-windup technique, a novel passivity-based adaptive sliding mode control (SMC) scheme is proposed without prior knowledge of uncertainty/disturbance bound. Within the Lyapunov framework, the establishment of a real sliding mode (which induces the practical stability of closed-loop error system) is validated. The main contributions are that a new control gain adaptive algorithm is adopted to attenuate the overestimation of switching gain and a differentiable projection-based parameter adaptive algorithm is proposed to force the mass approximator to remain in a desired domain, then the adaptive control law is modified by the reference trajectory generator and anti-windup technique to compensate for the effect of thrust saturation. Finally, simulations are conducted to show the fine performance of proposed control scheme.  相似文献   

19.
This paper presents an adaptive robust control strategy based on a radial basis function neural network (RBFNN) and an online iterative correction method (OICM) for a planar n-link underactuated manipulator with a passive first joint to realize its position control objective. An uncertain model of the planar n-link underactuated manipulator is built, which contains the parameter perturbation and the external disturbance. The adaptive robust controllers based on the RBFNN are designed to realize the model reduction, which makes the system reduce to a planar virtual three-link underactuated manipulator (PVTUM) and simplifies the complexity of the system control. An online differential evolution (DE) algorithm is used to calculate the target angles of the PVTUM based on the nominal model parameters. The control of the PVTUM is divided into two stages, and the adaptive robust controllers are still employed to realize the control objective of each stage. Then, the OICM is used to correct the deviations of all link angles of the PVTUM caused by the parameter perturbation, which makes the end-point of the system gradually approach to its target position. Finally, simulation results of a planar four-link underactuated manipulator demonstrate the effectiveness of the proposed adaptive robust control strategy.  相似文献   

20.
以南康市龙华乡集贸商住小区修建性详细规划项目为例,研究一种控制点重新定位的方法。实验以精度较高的参照点为依据,将假定坐标系交会出的参照点转换到原坐标系,从而实现了控制点的重新定位。同时,主要通过该项目的实际情况,结合测角前方交会观测的角度,然后由新的控制点坐标计算出的参照点坐标与原始参照点坐标进行比较、分析,证明了该方法是切实可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号