首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the problem of mean-square exponential stability for a class of discrete-time nonlinear singular Markovian jump systems with time-varying delay. The considered systems are with mode-dependent singular matrices Er(k)Er(k). By using the free-weighting matrix method and the Lyapunov functional method, delay-dependent sufficient conditions which guarantee the considered systems to be mean-square exponentially stable are presented. Finally, some numerical examples are employed to demonstrate the effectiveness of the proposed methods.  相似文献   

2.
The problem of robust finite-time stability (RFTS) for singular nonlinear systems with interval time-varying delay is studied in this paper. Some delay-dependent sufficient conditions of RFTS are derived in the form of the linear matrix inequalities (LMIs) by using Lyapunov–Krasovskii functional (LKF) method and singular analysis technique. Two examples are provided to show the applications of the proposed criteria.  相似文献   

3.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

4.
This paper deals with the exponential stability problem for a class of neutral singular systems with Markovian jump parameters. The considered systems involve time-varying delays not only in their state but also in their derivatives of state. By using the Lyapunov–Krasovskii functional method, some sufficient conditions are derived, which ensure that the considered systems are regular, impulse-free and exponentially stable. Finally, some numerical examples are employed to demonstrate the effectiveness of the obtained approaches.  相似文献   

5.
In this paper, two new estimation approaches namely delay-dependent-matrix-based (DDMB) reciprocally convex inequality approach and DDMB estimation approach, are introduced for stability analysis of time-varying delay systems. Different from existing estimation techniques with constant matrices, the estimation approaches are with delay-dependent matrices, which can employ more free matrices and utilize more information of both time delay and its derivative. Based on the estimation approaches, less conservative stability criteria with lower computational complexity are derived in the form of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the advantages of the proposed methods.  相似文献   

6.
This paper is focused on delay-dependent stability problem of time-varying delay systems. By introducing delay-derivative-dependent slack matrices, relaxed stability conditions are derived based on Lyapunov-Krasovskii functional approach. As the delay-derivative-dependent slack matrices provide extra freedom to optimize the Lyapunov matrices, less conservative results are obtained. Two benchmark examples are provided to verify the effectiveness of the proposed approach.  相似文献   

7.
This paper is concerned with the problem of finite-time stability analysis of linear discrete-time systems with time-varying delay. The time-varying delay has lower and upper bounds. By choosing a novel Lyapunov–Krasovskii-like functional, a new sufficient condition is derived to guarantee that the state of the system with time-varying delay does not exceed a given threshold during a fixed time interval. Then, the corresponding corollary is developed for the case of constant time delay. Numerical examples are provided to demonstrate the effectiveness and merits of the proposed method.  相似文献   

8.
This paper investigates the exponential stability problem for uncertain time-varying delay systems. Based on the Lyapunov-Krasovskii functional method, delay-dependent stability criteria have been derived in terms of a matrix inequality (LMI) which can be easily solved using efficient convex optimization algorithms. These results are shown to be less conservative than those reported in the literature. Four numerical examples are proposed to illustrate the effectiveness of our results.  相似文献   

9.
This paper is concerned with the robust stability analysis for uncertain systems with interval time-varying delay. In order to make full use of the delay information, a novel Lyapunov–Krasovskii functional (LKF) containing single, double, triple and quadruple integral terms is introduced, and a triple-integral state variable is also used. Then, by using the Wirtinger-based single and double integral inequality, introducing some positive scalars, the derivative of the constructed LKF is estimated more accurately. As a result, some stability criteria are derived, which have less conservatism and decision variables. Numerical examples are also given to show the effectiveness of the proposed method.  相似文献   

10.
The problem of finite-time stability for linear discrete-time systems with time-varying delay is studied in this paper. In order to deal with the time delay, the original system is firstly transformed into two interconnected subsystems. By constructing a delay-dependent Lyapunov–Krasovskii functional and using a two-term approximation of the time-varying delay, sufficient conditions of finite-time stability are derived and expressed in terms of linear matrix inequalities (LMIs). The derived stability conditions can be applied into analyzing the finite-time stability and deriving the maximally tolerable delay. Compared with the existing results on finite-time stability, the derived stability conditions are less conservative. In addition, for the stabilization problem, we design the state-feedback controller. Finally, numerical examples are used to illustrate the effectiveness of the proposed method.  相似文献   

11.
This paper deals with stability of discrete-time systems with an interval-like time-varying delay. By constructing a novel augmented Lyapunov functional and using an improved finite-sum inequality to deal with some sum-terms appearing in the forward difference of the Lyapunov functional, a less conservative stability criterion is obtained for the system under study if compared with some existing methods. Moreover, as a special case, the stability of discrete-time systems with a constant time delay is also investigated. Three numerical examples show that the derived stability criteria are less conservative and require relatively small number of decision variables.  相似文献   

12.
This paper investigates a stability problem for linear systems with time-varying delays. By constructing suitable augmented Lyapunov–Krasovskii functionals, improved stability criteria under various conditions of time-varying delays are derived within the framework of linear matrix inequalities (LMIs). Moreover, to reduce the computational burden caused by the non-convex term including h2(t), how to deal with it is applied by estimating it to the convex term including h(t). Finally, three illustrative examples are given to show the effectiveness of the proposed criteria.  相似文献   

13.
This paper is concerned with the stability analysis of linear systems with time-varying delays. First, by introducing the quadratic terms of time-varying delays and some integral vectors, a more suitable Lyapunov-Krasovskii functional (LKF) is constructed. Second, two new delay-dependent estimation methods are developed in the stability analysis of linear system with time-varying delays, which include a reciprocally convex matrix inequality and an integral inequality. More information about time-varying delays and more free matrices are introduced into the two estimation approaches, which play a key role for obtaining an accurate upper bound of the integral terms in time derivative of LKFs. Third, based on the novel LKFs and new estimation approaches, some less conservative criteria are derived in the form of linear matrix inequality (LMI). Finally, three numerical examples are applied to verify the advantages and effectiveness of the newly proposed methods.  相似文献   

14.
This paper is concerned with the admissibility analysis for the singular system with a periodically time-varying delay. By dividing the periodic delay interval into monotonically decreasing and increasing intervals, a novel Lyapunov–Krasovskii functional (LKF) is developed in virtue of the looped functional philosophy, relaxing the positive definition of the LKF and making full use of the system state and the time-varying delay function information. Then, a new admissibility condition is derived by combining the newly constructed LKF and the second-order canonical Bessel–Legendre integral inequality. Finally, two numerical examples are given to demonstrate the superiority of the developed method.  相似文献   

15.
This note focuses on the robust stabilization of discrete-time fuzzy uncertain systems with time-varying delays under a delayed nonparallel distributed compensation scheme. The key idea is twofold: first, the linear matrix inequalities (LMI) proposed here are shown to generalize some previous similar results available in recent literature, and second, the design of control parameters is decoupled from the proposed fuzzy-basis dependent Lyapunov–Krasovskii functional (FBDLKF) by means of Finsler?s lemma. Finally, a numerical example is provided to illustrate the effectiveness of this method.  相似文献   

16.
This paper investigates the problem of stabilization for fuzzy sampled-data systems with variable sampling. A novel Lyapunov–Krasovskii functional (LKF) is introduced to the fuzzy systems. The benefit of the new approach is that the LKF develops more information about actual sampling pattern of the fuzzy sampled-data systems. In addition, some symmetric matrices involved in the LKF are not required to be positive definite. Based on a recently introduced Wirtinger-based integral inequality that has been shown to be less conservative than Jensen’s inequality, much less conservative stabilization conditions are obtained. Then, the corresponding sampled-data controller can be synthesized by solving a set of linear matrix inequalities (LMIs). Finally, an illustrative example is given to show the feasibility and effectiveness of the proposed method.  相似文献   

17.
This paper studies bounded input bounded output (BIBO) stability for a class of neutral systems with time-varying delays. Based on Lyapunov method and linear matrix inequalities, some new BIBO stability criteria are established. The numerical simulation is made to demonstrate the effectiveness of the theoretical results obtained in this paper.  相似文献   

18.
This paper proposes new inequality-based functions to be Lyapunov functionals for the stability analysis of time-varying delay systems. The novel Lyapunov functionals are developed using a slack-matrices-based integral inequality for the first time. This is unlike most inequality-based functions that have been used as Lyapunov functionals which consist of single-matrices in their integral terms. Based on the new Lyapunov functionals, a new stability criterion is derived in the form of a matrix-valued quadratic function, which is proven to be negative definite using a geometry-based negativeness lemma. Two numerical examples showcase the effectiveness of our presented method.  相似文献   

19.
This work is concerned with the problem of reachable set synthesis for a class of singular systems with time-varying delay via the adaptive event-triggered scheme. Compared with the static event-triggered mechanism, the adaptive event-triggered mechanism can save the communication resources more effectively. By virtue of Lyapunov stability theory, sufficient conditions are given to guarantee the stability of the closed-loop system and that the reachable set of the resulting system is bounded by the obtained ellipsoid. In addition, by using linear matrix inequality technique and free-weighting matrix method, the weighting matrix of event-triggered condition and proportional-derivative (P-D) feedback controller gains are obtained. The effectiveness and superiority of the developed control approach are substantiated by a numerical example and two practical examples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号