首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the expected static group synchronization problem of the second-order multi-agent systems via pinning control. For directed communication topology with spanning tree, based on Gershgorin disk theorem and the matrix property, a static pinning control protocol with fixed gains is first introduced and some sufficient and necessary static group synchronization criteria are also established. It is worth mentioning that a rigorous proof is also given that only one pinning node is needed to guarantee static group synchronization, which could be inferred that our protocol might be more economical and effective in large scale of multi-agent systems. Then, for weakly connected directed communication topology with nodes of zero in-degree, an adaptive pinning control applied to the node with zero in-degree is also proposed to achieve static group synchronization. Finally, the efficiency of the proposed protocols is verified by two simulation examples.  相似文献   

2.
This paper is devoted to the reliable leader-following consensus realization for a class of nonlinear multi-agent systems. The parameters of every agent are assumed to encounter sudden changes, which are governed by a semi-Markov process. A control protocol which possesses the performance of resisting actuator faults is employed for ensuring the reliable leader-following consensus and an analysis result is established by using the Lyapunov–Krasovskii functional method. Then an easy-to-implement condition is proposed for the issue of leader-following reliable consensus realization. If the condition is satisfied, the desired controller gain can be obtained via the numerical solutions of a set of linear matrix inequalities. At last, the feasibility of the proposed scheme is well explained by an illustrated example.  相似文献   

3.
4.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

5.
In this paper, both leaderless and leader-follower consensus problems for a class of disturbed second-order multi-agent systems are studied. Based on integral sliding-mode control, sliding-mode consensus protocols are proposed for leaderless and leader-follower multi-agent systems with disturbances, respectively. Firstly, for leaderless second-order multi-agent systems, a sliding-mode consensus protocol is proposed to make the agents achieve asymptotic consensus. Secondly, for leader-follower second-order multi-agent systems, a finite-time sliding-mode consensus protocol is designed to make the agents achieve consensus in finite time. Both kinds of consensus protocols inherit the anti-disturbance performance and robustness of sliding-mode control and require less communication information. Finally, two numerical simulations are given for leaderless and leader-follower second-order multi-agent systems to validate the efficiency of the proposed consensus protocols.  相似文献   

6.
This paper addresses the quantized consensus problem of second-order multi-agent systems (MASs) where the topology has a directed spanning tree. An event-trigger control protocol (ETCP) is proposed by designing a combined threshold. The combined threshold not only reduces more event triggers than the state-dependent threshold, but also is more practical than the time-dependent threshold. For further reducing computation resources and transmission cost, the sampled data, self-trigger scheme and data quantization are employed together. Under the proposed ETCP, the sufficient condition is derived to guarantee the quantized consensus of second-order MASs. Finally, the comparison experiments are conducted to demonstrate the superiority of ETCP based on the combined threshold.  相似文献   

7.
This paper investigates mean square leaderless consensus of networked nonlinear multi-agent systems. An efficient distributed event-triggered mechanism based on stochastic sampling is introduced to reduce the communication cost and controller updates. The stochastic sampling interval randomly switches between two given values. Mean square consensus criteria for multi-agent systems with strongly connected networks or networks containing directed spanning trees are derived, respectively. Moreover, the case with a special event-triggered weighting matrix and the case without even-triggered strategies are also discussed. Finally, an example is given to verify the theoretical results.  相似文献   

8.
In this paper, the consensus problem of multi-agent systems with general linear dynamics is studied. Motivated by the MIMO communication technique, a general framework is considered in which different state variables are exchanged in different independent interaction topologies. This novel framework could improve the control system design flexibility and potentially improve the system performance. Fully distributed consensus control laws are proposed and analyzed for the settings of fixed and switching multiple topologies. The control law can be applied using only local information. And the control gain can be designed depending on the dynamics of the individual agent. By transforming the overall multi-agent systems into cascade systems, necessary and sufficient conditions are provided to guarantee the consensus of the overall systems under fixed and switching state variable dependent topologies, respectively. Two simulation examples are provided to illustrate the effectiveness of the proposed theoretical results.  相似文献   

9.
10.
This paper studies a scaled consensus problem with output saturation in the sense that the states of agents reach assigned proportions rather than a common consensus value. Specifically, we investigate single-integrator agents with output saturation under both undirected and strongly connected graphs. Some conditions for single-integrator agents with output saturation are illustrated. The main contribution is that by employing an integral Lyapunov function, a necessary and sufficient condition is first obtained to reach scaled consensus among agents with output saturation. Simulation results are presented to show the performance of the scaled consensus.  相似文献   

11.
In this paper, the global Mittag-Leffler consensus tracking issue is considered for fractional singularly perturbed multi-agent systems (FSPMASs) based on event-triggered control strategy, where the inherent dynamic is modeled to be a discontinuous function with nondecreasing property. Firstly, a differential inequality with respect to fractional-order derivative of convex function is developed. As the special cases, the inequalities about fractional-order derivative of three known functions are also addressed. Secondly, a distributed event-triggered control scheme is designed to guarantee that the considered FSPMASs can achieve the global Mittag-Leffler consensus. Moreover, the Mittag-Leffer convergence speed of tracking the leader for followers can be adjusted to any desired values in advance. In addition, under fractional Filippov differential inclusion framework, by applying Lur’e Postnikov-type Lyapunov functional with variable upper limit integral item and Clarke’s non-smooth analysis technique, the global Mittag-Leffler consensus conditions are addressed in terms of matrix inequalities (MIs). Finally, two numerical simulations are provided to illustrate the validity of the proposed design method and theoretical results.  相似文献   

12.
13.
In this paper, the specified-time bearing-based formation control problem is investigated via a dynamic gain approach. Both the leader-follower and leaderless cases for single- and double-integral multi-agent systems are considered with bearing measurement, respectively. By considering the communication graph as bearing rigid, distributed bearing-based controllers with a time-varying gain are designed. By using time transformation method and Lyapunov stability theory, the close-loop systems under the proposed protocols can achieve the target formation within the specified time. Comparing with some existing results, the proposed approaches can make multi-agent systems converge to the desired formation within any preset time without dependence on the initial conditions or system parameters. Finally, some simulations and experiments are presented to demonstrate the effectiveness of the proposed algorithms.  相似文献   

14.
This paper investigates the leader-following consensus problem of time-invariant linear multi-agent systems with limited data rate. Based on the idea of assigning a priority level for each agent of the concerned multi-agent system, a novel distributed control law has been proposed. The proposed control law has two distinctive advantages. That is, it is fully distributed in the sense that it does not rely on the eigenvalues of the Laplace matrix associated with the topology. Moreover, the required data rate is independent of the number of agents and remains small even if the number of the agents in multi-agent systems is large. An example is finally given to illustrate the effectiveness of the proposed controller.  相似文献   

15.
In this paper, we mainly investigate the finite-time consensus problem of general linear multi-agent systems. The paper proposed a suitable event-triggered control strategy. The strategy has some desirable properties including: distributed, independent, and asynchronous. It is theoretical demonstrated that the multi-agent system can achieve consensus in a certain time regardless of the initial condition under this event-triggered control scheme. In addition, without finding singular triggering problem, we prove the feasibility of this proposed event-triggered control protocol. Finally, we put forward some simulation graphs for the sake of showing the availability of our conclusions.  相似文献   

16.
This paper investigates a finite-time consensus issue for non-affine pure-feedback multi-agent systems with dead-zone input. Compared with the existing results on multi-agent systems, finite-time consensus problem of non-affine multi-agent systems is proposed for the first time. Based on the backsteppting technique, adaptive finite-time consensus control scheme is presented. With the help of this strategy, adaptive virtual variables, adaptive laws and the actual controller are designed to guarantee that the consensus errors converge to a small scale of the origin in finite time. Finally, a practical example is applied to verify the feasibility of the proposed method.  相似文献   

17.
We consider the leader–follower consensus problem for a multi-agent system where information is exchanged only on a non-uniform discrete stochastic time domain. For a second-order multi-agent system subject to intermittent information exchange, we model the tracking error dynamics as a μ?varying linear system on a discrete stochastic time scale, where μ is the graininess operator. Based on a Lyapunov operator and a positive perturbation operator on the space of symmetric matrices, we derive necessary and sufficient conditions to design a decentralized consensus protocol. This protocol allows us to cast the mean-square exponential consensus problem within the framework of dynamic equations on stochastic time scales. We establish some theoretical results which allow for the computation of the control gain matrix which guarantees the mean-square exponential stability with a given decay rate for the error dynamics. To show the effectiveness of the theoretical results, some simulation and experimental results on multi-robot systems have been performed.  相似文献   

18.
This paper is concerned with a leader-follower consensus problem for networked Lipschitz nonlinear multi-agent systems. An event-triggered consensus controller is developed with the consideration of discontinuous state feedback. To further enhance the robustness of the proposed controller, modeling uncertainty and switching topology are also considered in the stability analysis. Meanwhile, a time-delay equivalent approach is adopted to deal with the discrete-time control problem. Particularly, a sufficient condition for the stochastic stabilization of the networked multi-agent systems is proposed based on the Lyapunov functional method. Furthermore, an optimization algorithm is developed to derive the parameters of the controller. Finally, numerical simulation is conducted to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

19.
In this paper, the leader-following consensus problem of general linear multi-agent systems without direct access to real-time state is investigated. A novel observer-based event-triggered tracking consensus control scheme is proposed. In the control scheme, a distributed observer is designed to estimate the relative full states, which are used in tracking consensus protocol to achieve overall consensus. And an event-triggered mechanism with estimated state-dependent event condition is adopted to update the control signals so as to reduce unnecessary data communication. Based on the Lyapunov theorem and graph theory, the proposed event-triggered control scheme is proved to implement the tracking consensus when real-time state cannot direct obtain. Moreover, such scheme can exclude Zeno-behavior. Finally, numerical simulations illustrate the effectiveness of the theoretical results.  相似文献   

20.
This paper is concerned with the secure bipartite consensus of second-order multi-agent systems under denial-of-service (DoS) attacks. The communication network is an antagonistic network, in which there is cooperative or competitive relationship between neighboring agents. Meanwhile, information cannot be transmitted when the system is attacked. A novel event-triggered control algorithm based on sampled data is proposed to save limited resources and exclude the Zeno behavior. By applying the convergence of monotone sequences, graph theory as well as the discrete-time Lyapunov function method, some sufficient conditions on threshold parameters, frequency and duration of DoS attacks, and sampling period are derived to ensure the bipartite consensus under DoS attacks. Finally, the correctness and advantages of theoretical results are demonstrated by a numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号