首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given any finite family of real d-by-d nonsingular matrices {S1,,Sl}, by extending the well-known Li–Yorke chaos of a deterministic nonlinear dynamical system to a discrete-time linear inclusion or hybrid or switched system:
xn{Skxn?1;1kl},x0Rdandn1,
we study the chaotic dynamics of the state trajectory (xn(x0, σ))n ≥ 1 with initial state x0Rd, governed by a switching law σ:N{1,,l}. Two sufficient conditions are given so that for a “large” set of switching laws σ, there exhibits the scrambled dynamics as follows: for all x0,y0Rd,x0y0,
lim infn+xn(x0,σ)?xn(y0,σ)=0andlim supn+xn(x0,σ)?xn(y0,σ)=.
This implies that there coexist positive, zero and negative Lyapunov exponents and that the trajectories (xn(x0, σ))n ≥ 1 are extremely sensitive to the initial states x0Rd. We also show that a periodically stable linear inclusion system, which may be product unbounded, does not exhibit any such chaotic behavior. An explicit simple example shows the discontinuity of Lyapunov exponents with respect to the switching laws.  相似文献   

2.
This paper deals with observer-based control design for a class of switched discrete-time linear systems with parameter uncertainties. The main contribution of the paper is to propose a convenient way based on Finsler’s lemma to enhance the synthesis conditions, expressed in terms of Linear Matrix Inequalities (LMIs). Indeed, this judicious use of Finsler’s lemma provides additional decision variables, which render the LMIs less conservative and more general than all those existing in the literature for the same class of systems. Two numerical examples followed by a Monte Carlo evaluation are proposed to show the superiority of the proposed design technique.  相似文献   

3.
4.
This paper is concerned with the output reachable set estimation for discrete-time switched systems. The switching signal is considered as persistent dwell-time (PDT), which is more general and flexible compared with the common dwell-time and average dwell-time switching. The estimation of output reachable set is determined by a collection of bounding ellipsoids based on a family of quasi-time-dependent (QTD) Lyapunov functions. Furthermore, a set of non-fragile QTD controllers is designed. Finally, two examples are employed to illustrate the potentials of proposed methods.  相似文献   

5.
In this note, we will devote to investigate the stability of discrete-time switched positive linear time-varying systems (PLTVSs). Firstly, a new asymptotic stability criterion of discrete-time PLTVSs is obtained by using time-varying copositive Lyapunov functions (TVCLFs) and this criterion is then extended to the switched case based on the multiple TVCLFs. Furthermore, the sufficient conditions are derived for stability of discrete-time switched PLTVSs with stable subsystems by means of function-dependent average dwell time and function-dependent minimum dwell time. In addition, the stability sufficient conditions are drawn for the switched PLTVSs which contain unstable subsystems. It is worth noting that the difference of TVCLFs and multiple TVCLFs are both relaxed to indefinite in our work. The theoretical results obtained are verified by two numerical examples.  相似文献   

6.
An algorithm, amenable for programming on a digital computer, has been presented for the modelling of linear discrete-time systems, as an alternative to the procedure of Shamash (1). The transformations inherent in the procedure are easily accomplished by the synthetic division technique. With the use of modified Cauer form of continued fraction (MCF), the new method matches a set of both the time-moments and Markov parameters of the system and of the model, as in the procedure of Parthasarathy and Singh (2), giving a better approximation to the system response at all times. A distinct feature of the proposed algorithm compared with the earlier methods of discrete system reduction (1),(2), is that a number of reduced-order models are generated simultaneously; this allows scope for better selection in choosing the right model for system analysis and design.  相似文献   

7.
In this paper we develop a new framework for time series segmentation based on a Hierarchical Linear Dynamical System (HLDS), and test its performance on monophonic and polyphonic musical note recognition. The center piece of our approach is the inclusion of constraints in the filter topology, instead of on the cost function as normally done in machine learning. Just by slowing down the dynamics of the top layer of an augmented (multilayer) state model, which is still compatible with the recursive update equation proposed originally by Kalman, the system learns directly from data all the musical notes, without labels, effectively creating a time series clustering algorithm that does not require segmentation. We analyze the HLDS properties and show that it provides better classification accuracy compared to current state-of-the-art approaches.  相似文献   

8.
This paper aims at providing new design approaches for positive observers of discrete-time positive linear systems based on a construction method of linear copositive Lyapunov function for positive systems. First, an efficient positive observer design approach is proposed by using linear programming such that the observer error system is exponentially stable. Furthermore, an interval observer design is proposed for uncertain positive systems. Then, the results are extended to positive time delay systems. In contrast with the previous design approaches, the new design method provides a general observer design with lower computational burden. Finally, three comparison examples are given to show the merit of the new design approach.  相似文献   

9.
10.
This paper investigates the global stabilization of discrete-time linear systems with input time delay by bounded controls. Based on some special canonical forms containing time delays both in its input and state, two special discrete-time linear systems---multiple integrators and oscillators are first considered. The global stabilizing controllers are respectively established, and moreover, explicit conditions are established to guarantee the stability of the closed-loop systems. Subsequently, a concise design method is proposed for globally stabilizing general discrete-time linear system by combining the design methods for multiple integrators and oscillators. The designed controller is in the explicit form with explicit stability conditions being given, and thus is easier to use than the existing results. Finally, numerical simulations illustrate the effectiveness of the proposed approaches.  相似文献   

11.
In this paper a new integrated observer-based fault estimation and accommodation strategy for discrete-time piecewise linear (PWL) systems subject to actuator faults is proposed. A robust estimator is designed to simultaneously estimate the state of the system and the actuator fault. Then, the estimate of fault is used to compensate for the effect of the fault. By using the estimate of fault and the states, a fault tolerant controller using a PWL state feedback is designed. The observer-based fault-tolerant controller is obtained by the interconnection of the estimator and the state feedback controller. We show that separate design of the state feedback and the estimator results in the stability of the overall closed-loop system. In addition, the input-to-state stability (ISS) gain for the closed-loop system is obtained and a procedure for minimizing it is given. All of the design conditions are formulated in terms of linear matrix inequalities (LMI) which can be solved efficiently. Also, performance of the estimator and the state feedback controller are minimized by solving convex optimization problems. The efficiency of the method is demonstrated by means of a numerical example.  相似文献   

12.
In this paper, we design two distributed output consensus controllers for heterogeneous linear systems based on internal model principle and then study the quantization effect on the controllers when uniform quantizers are used in the communication channels. The first controller considers the general situation when the internal model state matrix of the system may be unstable and the communication graphs are strongly connected directed graphs. We prove that the bound of the consensus error is proportional to the quantizer parameter with a coefficient related to the size of the network and the property of the communication graphs. The second controller considers the situation when the internal model state matrix is neutrally stable and the communication graphs are undirected connected graphs. In this case, we derive a better bound of the consensus error which is proportional to the quantizer parameter and the coefficient is unrelated to the size of the network when the linear systems are homogeneous. Simulation examples are provided to illustrate the theoretical results.  相似文献   

13.
In conventional PID-type iterative learning control (ILC) designs, to determine the learning control gains involved, relevant model knowledge on the controlled systems is often dependent. In this paper, two completely data-driven ILC laws, the extended PD-type ILC law and the extended P-type ILC law, are designed in frequency domain for linear discrete-time (LDT) single-input single-output (SISO) systems. The designs of the proposed ILC laws are based on the approximation/identification to unknown transfer function with a novel adaptive Fourier decomposition (AFD) technique. As a result, the strictly monotonic convergence of ILC tracking error is guaranteed in a deterministic way. A numerical example on a four-axis robot arm is performed to illustrate the effectiveness of the proposed data-driven ILC algorithms  相似文献   

14.
This paper is concerned with the problem of state estimation for a class of discrete-time switched positive linear systems (SPLS) with average dwell time (ADT) switching. By utilizing the multiple linear copositive Lyapunov function (MLCLF) approach, the ADT switching is introduced to tackle the state estimation of the underlying system. Some sufficient conditions of the existence of the estimator are derived in terms of a set of linear matrix inequalities for the underlying systems with ADT switching. The results for the SPLS under arbitrary switching can be easily obtained by reducing MLCLF to the common linear copositive Lyapunov function used for the system in the literature. Finally, a numerical example is given to show the validity of the obtained theoretical results.  相似文献   

15.
The paper is concerned with the stability and stabilization problems for a family of hybrid linear parameter-varying systems with stochastic mode switching. The switching phenomenon is modeled by a semi-Markov stochastic process which is more generalized than a Markov stochastic process. With the construction of a Lyapunov function that depends on both the parameter variation and operating mode, numerical testable stability and stabilization criteria are established in the sense of σ-error mean square stability with the aid of some mathematical techniques that can eliminate the terms containing products of matrices. To test the effectiveness of the designed stabilizing controller, we apply the developed theoretical results to a numerical example.  相似文献   

16.
17.
This paper is concerned with the problem of finite-time stability analysis of linear discrete-time systems with time-varying delay. The time-varying delay has lower and upper bounds. By choosing a novel Lyapunov–Krasovskii-like functional, a new sufficient condition is derived to guarantee that the state of the system with time-varying delay does not exceed a given threshold during a fixed time interval. Then, the corresponding corollary is developed for the case of constant time delay. Numerical examples are provided to demonstrate the effectiveness and merits of the proposed method.  相似文献   

18.
An approximate method is proposed for the determination of the output sensitivity function of linear time-varying systems using polynomial series expansions. The novelities of the proposed method are the use of the operational matrix of differentiation for the derivation of the algebraic equations approximating the differential equation, and the use of the operational matrix of polynomial series transformation for the simplification of the algorithm required for the application of the method using any type of polynomial series.  相似文献   

19.
This paper investigates the output formation-containment problem of the coupled heterogeneous linear systems under intermittent communication. The systems considered in this paper are more general in the sense that each system, whether a leader or a follower, has different dimension and different dynamic. Besides, each system only communicates with its neighbors intermittently. Based on the intermittent information, both the state-feedback and the output-feedback distributed control protocols are designed and a criterion is derived to calculate the lower bound of the communication ratio. Furthermore, a heuristic algorithm based on the Fireworks Algorithm is developed to obtain an optimized communication ratio, which greatly reduces the communication burden. Finally, numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

20.
A novel interval observer filtering-based fault diagnosis method for linear discrete-time systems with dual uncertainties is proposed to detect actuator faults. The idea of minimization is adopted to design a fault-free state estimator by merging unknown but bounded and Gaussian disturbances and noises according to the signal average power principle. Using a fault-free state interval and measurement residual of the system, a fault detection indicator is designed based on the residual probability ratio, to achieve dynamic fault detection, isolation and identification. Finally, various simulation examples are provided to demonstrate the accuracy and effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号