首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
交集法     
一、交集法的含义解方程组 f_1(x,y)=0 { f_2(x,y)=0就是求所有既满足第一个方程,又满足第二个方程的公共解,也就是求两个方程的解集的交集。反映到几何上,就是求这两个方程的曲线的交点集合。把这种思想方法用于几何作图,就是我们熟知的交轨作图法。例如已知底边、顶角、底边上的高,求作三角形。分析设ABC是适合条件的三角形,其中BC是底边,那么问题化归为确定A点,且A点应满足两条性质a与b  相似文献   

2.
在解方程组中常使用下列定理与推论: 定理:设H(x,y)是任意一个关于x、y的多项式,a是异于零的常数, F_1(x,y)=0 ①则方程组 { F_2(x,y)=0 ② aF_1(x,y)+H(x,y)·F_2(x,y)=0 ③与方程组 { 同解。 F_2(X,y)=0 ④ F_1(x,y)=0 ①推论:方程组{ F_2(x,y)=0 ② F_1(x,y)+k·F_2(x,y)=0 ③与方程组 { F_1(x,y)=0 ④同解,这里k是一个非零的实数。这个定理与推论是在方程组中进行加减消元法同解变形的理论依据,其目的是要经过适当变形,达到使定理中③或推论中③消元、降次或能因式分解,从而易于解出。对中等数学  相似文献   

3.
已知f(x,y)=0,求g(x,y)的最值,这是高中数学新教材中常见的一类“条件最值”题.这类题在高考中常出现,其解法由于教材中没有系统论述,且思维灵活性较强,同学们往往难以入手.本文试通过一道课本习题,多层面探究其解法,并总结出解这类题的若干数学思想,然后通过相关习题运用数学思想,体验“最值”解法,以达到灵活应用的目的. 一、一题多解,体现数学思想例1已知x2+y2=16,求x+y的最大值和最小值.(选自人教版全日制普通高级中学教科书(必修)数学第二册(上)P89第6题)  相似文献   

4.
众所周知,曲线f(x,y)=0关于x轴对称的曲线方程是f(x,-y)=0,关于y轴对称的曲线方程是f(-x,y)=0,关于原点成中心对称的曲线方程是f(-x,-y)=0由此想到曲线f(x,y)=0关于任何已知直线ax+by+c=0成轴对称的曲线方程是什么形式?关于任何已知点M(a,b)成中心对称的曲线方程又是什么形式?这就是本文要探讨的问题。 先看一名中学生对下面一道习题的奇妙解法。题目是:“求直线3x-4y+2=0关于直线x-y+3=0成轴对称的直线方程。” 解 由x-y+3=0,得x=y-3,y=x+3,同时代入3x-4y+2=0中,得3(y-3)-4(x+3)+2=0,即4x-3y+19=0。此即为所求的对称直线方程。  相似文献   

5.
如下习题及其解法应该是熟知的.已知x/(a-b)=y/(b-c)=z/(c-a),求x y z的值.解:设x/(a-b)=y/(b-c)=z/(c-a)=k,则x=k(a-b)、y=k(b-c)、z=k(c-a).  相似文献   

6.
在平面上引入直角坐标系以后,一般曲线可以用方程F(x,y)=0表示,这个方程叫做曲线方程,但如果方程F(x,y)=0中含有参数(主要变量x、y以外的变数),那么这个方程称为曲线族方程,它所表示的是具有某一共同性质的一些曲线。曲线族方程在求曲线的方程,求点的轨迹,研究曲线的形状以及位置关系等方面有着广泛的应用。  相似文献   

7.
高昌 《教育革新》2007,(10):59-59
我们知道,方程f1(x,y) λf2(x,y)=0表示的曲线经过f1(x,y)=0和f2(x,y)=0交点的曲线系方程.利用上述曲线系方程求过已知两曲线交点的新曲线方程,可避免求交点的坐标,其方法如下.  相似文献   

8.
求圆锥曲线中参数范围问题是一个综合题型,它常和直线与圆锥曲线的位置关系联系在一起.解这类问题不仅需要扎实的基础知识,而且还需要掌握灵活多变的方法.同学们解这类题常感到困难,为帮助同学们解决这一问题,本文介绍几种方法,以供参考.1构造函数用最值法例1若椭圆x22 y2=a2(a>0)与连结A(1,2)、B(3,4)易2求点得的线线段段A有B公的共方点程,为求ya=的x取 值1(范x∈围[.1,3]),椭圆与线段AB有公共点等价于方程组x22 y2=a2,y=x 1有满足x∈[1,3]的解,即方程x22 (x 1)2=a2在[1,3]内有解,改变角度视a2为x的函数,得a2=32x2 2x 1=32(x 23)2 31(x…  相似文献   

9.
活用一次方程或一次方程组的解可巧妙解题 ,现略举几例 ,供同学们学习时参考 .例 1 已知关于 x、y 的方程组3x - 4y=- 6 ,ax + 2 by=- 4和 3bx+ 2 ay=0 ,2 x- y=1有相同的解 ,求 a和 b的值 .分析 :两个方程组的解相同 ,则这个解必定同时适合这两个方程组中的四个方程 ,从而它必定是方程组( 1) 3x- 4y=- 6 ,2 x- y=1和 ( 2 ) ax+ 2 by=- 4,3bx+ 2 ay=0 的解 .因此 ,可有如下巧解 .解 :解方程组 3x- 4y=- 6 ,2 x- y=1. 得 x=2 ,y=3.把 x=2 ,y=3.代入 ( 2 )可得 2 a+ 6 b=- 4,6 a+ 6 b=0 .解之 ,得 a=1,b=- 1.例 2 王明和李芳同求方程 ax + b…  相似文献   

10.
已知f(x,y)=0,求g(x,y)的最值,这是高中数学新教材中常见的一类“条件最值”题.这类题在高考和数学竞赛中也频繁考及,其解法由于教材中没有系统论述,且思维灵活性较强,学生往往难于入手.本文先通过一道课本习题,多层面探究其解法,并总结出解这类题的若干数学思想,然后通过相关习题运用数学思想,体验“最值”解法,以达到灵活应用的目的.  相似文献   

11.
※求值问题※例1:已知函数f(x)=x2(x>0),1(x=0)0(x<0)".,求f{f[f(-3)]}的值.分析:明确自变量在函数的哪一个段上,是解此类题的关键.解:∵-3<0,∴f(-3)=0,∴f[f(-3)]=1,∴f{f[f(-3)]}=f(1)=12=1.※求解析式问题※例2:已知f(x)=x,g(x)=-x+1,!(x)=-12x+2.设f(x),g(x),!(x)的最大值为F(x),求F(x)的解析式.分析:本题的关键是画出图象,求出交点,从而正确地分段,再在各段上写出符合要求的解析式,最后写出分段函数的解析式.解:如图,画出f(x),g(x),!(x)的图象,下面再求交点坐标.!由y=-x+1,y=-21x+2".得yx==3-2,".由y=x,y=-12x+2".得y=34%%%%$%%%…  相似文献   

12.
在数学教学中,我们经常遇到这样一类题目:“已知多元方程F(x_1,x_2,…,x_n)=0(或方程组),求(或证明)…”。学生在解这类以多元方程(组)为条件的习题时,往往围着多元方程打转转,总跳不出这个圈。本文就这类习题的解法作一些探讨。一、化多元方程F(x_1,x_2,…,x_n)=J(或方程组),使之成为若干个非负实数的和,然后利用非负实数的性质列出关于x_1,x_2,…,x_n的方程组,通过解这个方程达到欲求的结果。  相似文献   

13.
解平面上两点集Q={(x,y)|f(x,y)=0}和R={(x,Y)|g(x,y)=0}的交集问题是高中数学中常见题型。这类问题叙述抽象,条件隐含,解题时对问题需要具体分析、加工和适当变换,把抽象问题转化为明确的数学问题或转化为利用直观图形的几何问题,就能找到简洁的解题途径。本文对这类问题的探讨谈几点看法。一、变换为利用几何图形的求解问题当题设中的点集表示直线和曲线时,可将它们的交集的求解问题转化为解直线和曲线的交点问题,由此来确定参数。例1 已知A={(x,y)|ax y=2},B={(x,y)|x ay=2},C={(x,y)|x~2 y~2=4},当  相似文献   

14.
一利用已知对称关系及其结论化繁为简例1 已知两曲线 y=kx 1和 x~2 y~2 kx-y-4=0的两个交点关于直线 y=x 对称,求两交点坐标.解:因两曲线的两交点关于直线 y=x 对称,则直线y=kx 1和直线 y=x 垂直.故 k=-1.解方程组(?)得两曲线交点为(2,-1)和(-1,2).  相似文献   

15.
同学们在学习二元一次方程组时,一定碰到过类似这样的问题:已知关于x、y的方程组42xx- y2=y=3m9,!m的解满足2x-3y=36,试求m的值.这是关于方程组的解满足一定条件的问题.解决这类问题的方法比较多.下面列出几种解法,供同学们欣赏.看完后仔细想想,你还有其他方法吗?解法1:将m看做  相似文献   

16.
数学思想是研究和解决数学问题和有关实际问题的基本指导思想.求解数学问题时,若能正确地运用数学思想,则可提高解题效率.本文举例介绍在求解三角问题时的常用数学思想.一、函数思想例1已知x3+sinx-2a=0,x∈[-π2,π2],4y3+sinycosy+a=0,y∈[-π4,π4],求sin(x+2y)的值.分析:从已知条件所具有的特征出发,可构造一个新的函数f(x)=x3+sinx,利用该函数的单调性,找出x与2y的关系,从而获得解答.解:令函数f(x)=x3+sinx,由x3+sinx-2a=0,得2a=x3+sinx=f(x).又由4y3+sinycosy+a=0,得2a=-8y3-2sinycosy=(-2y)3+sin(-2y)=f(-2y),∴f(x)=f(-2y),∵x,-2y…  相似文献   

17.
在我们的习惯思维活动中,对称思想往往伴随解析几何的问题,如函数中也存在着许多与对称有关的问题.但还有一些潜在对称的数式和图式问题,这类问题从其外形来看与对称问题毫不相关,但若能挖掘潜在的对称性,充分利用对称思想、对称原理求解,则能在纷繁的困惑中,求得简捷的解法.一、利用对称思想解决方程有关问题例1 已知方程组x2-y+2a=0y2-x+2a=0有唯一的实数解,试求实数a的值.解:易知方程x2-y+2a=0与y2-x+2a=0所表示的曲线关于直线y=x对称.又∵方程组有唯一解,∴两曲线有唯一交点,故此点必在直线y=x上,于是可以断定方程x2-x+2a=0有两相等的…  相似文献   

18.
在f(x,y)=0的条件下,求u=g(x,y)的最值,我们称这类问题为解析型最值问题,其中把f(x,y)=0视为定曲线,u=g(x,y)视为动曲线,在中学阶段解这类问题,往往都是借助于一些特殊的方法,学生不易掌握,本文给出一种极坐标解法,供读者参考。 例1 实数x、y满足4x~2-5xy 4y~2=5,又设S=x~2=y~2,则(1993年全国高中数学联赛试题) 解:定曲线可化为p~2=10/8-5sin2θ 当sin2θ=1时,p_(max)~2=10/3; 当sin2θ=-1时,p_(min)~2=10/13. 而动曲线S=x~2 y~2=p~2,  相似文献   

19.
如果两个方程组的解集相同,则称这两个方程组同解。解方程组时,通常是将原方程组逐步变形成为一个易解的方程组来解,这里的“变形”,一定要是同解变形。什么样的变形为同解变形?本文仅以二元方程组为例给出几个主要方程组的同解性定理。首先约定:以记号f(x,y)=0表为二元方程,以其中一个变量(如x)表另一个变量(如y)记为y=f(x),其余类同。定理Ⅰ:方程组{y=f(x) g(x,y)=0(*)与方程组 {y=f(x)(**)同解。 g[x,f(x)]=0 证明:设(α,β)为方程组(*)的任一解, 则有{β=f(α) g(α,β)=0, 即{β=f(α) g[α,f(α)]=0 故(α,β)亦是方程组(**)的解。  相似文献   

20.
确定有限制条件的方程F(x,a)=0中参数a的范围,这类题目综合性强,难度较大,下面从五个方面给出其求解策略. 1.等价变形,转化为不等式将方程F(x,a)=0作等价变形为x= f(a),利用x的限制条件得出含a的不等式,将问题转化为解不等式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号