首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>求数列通项在高考中属于常考内容,本文归纳整理了几种方法,供参考.一、已知a_1和a_n=a_(n-1)+f(n)型,其中f(n)可求和例1已知数列{a_n}满足a_(n+1)=a_n+3n+2,且a_1=2,求a_n.解由a_(n+1)=a_n+3n+2知a_(n+1)-a_n=3n+2,a_n-a_(n-1)=3n-1.a_n=(a_n-a_(n-1))+(a_(n-1)-a_(n-2))+…+(a_2-a_1)+a_1=(3n-1)+(3n-4)+……+5+2  相似文献   

2.
例1已知数列{a_n}中,a_1=1,对任意自然数n都有a_n=a_(n-1)+1/(n(n+1)),求a_n.解:由已知得a_n-a_(n-1)=1/(n(n+1)),a_(n-1)-a_(n-2)=1/((n-1)n),…,a_3-a_2=1/(3×4),a_2-a_1=1/(2×3).以上n-1个式子累加,并利用1/(n(n+1))=1/n-1/(n+1),得a_n-a_1=1/(2×3)+…+1/((n-2)(n-1))+1/((n+1)n)+1/(n(n+1))=1/2-1/(n+1),∴a_n=3/2-1/(n+1).点评:求形如a_n-a_(n-1)=f(n)的数列通项,可用累加法.  相似文献   

3.
<正>一、数列本身各部分知识的综合例1已知各项均为正数的数列{a_n}的前n项和为S_n,且满足S_1>1,6S_n=(a_n+1)(a_n+2),n∈N_+,求{a_n}的通项公式。解析:利用n≥2时S_n-S_(n-1)=a_n将已知条件6S_n=(a_n+1)(a_n+2),n∈N+转化为a_n与a_(n-1)之间的关系。由a_1=S_1=1/6(a_1+1)(a_1+2),解得a_1=1或a_1=2,由假设a_1=S_1>1,因此a_1=2。又由a_(n+1)=S_n+1-  相似文献   

4.
设n是大于1的自然数,a>0。易知a(?)1时,a-1与n-(1+a+…+a~(n-1))总是异号。所以, (a-1)[n-(1+a+…+a~(n-1))]≤0。即(a-1)(n-(1-a~n)/(1-a))≤0。整理,有a(n-a~(n-1))≤n-1。①显然,①式等号成立的充分必要是a=1。如果a_1,a_2,…,a_n是n个正数,在①中令a=(a_1/((a_1+a_2+…+a_n)/n)~(1/(n-1)),则有a_1~(1/(n-1))·(a_2+…+a_n)/(n-1)≤≤((a_1+a_2+…+a_n)/n)~(n~(n-1)),即((a_1+a_2+…+a_n)/n)~n≥≥a_1((a_1+a_2+…+a_n)/(n-1))~(n-1)。②再在①中令a=(a_2/(a_2+…+a_n)/(n-))~(1/(n-2)),重复上述步骤,并结合②,有  相似文献   

5.
数列是中学数学的重要内容之一,有关数列的习题形式多样,解法灵活,除要求较高的分析问题和解决问题的能力之外,还必须具有清晰的概念和比较坚实的基础知识,否则常因概念不清而导致谬误。举例于下: 一、判别数列的类型不确切。例1 已知数列{a_n}满足a_1=1,a_2=7,且a_n=2a_(n-1)+3a_(n-2)(n≥3) ①求a_n。错解:将2a_(n-1)拆成3a_(n-1)—a_(n-1)后,①式可化为 a_n+a_(n-1)=3(a_(n-1)+a_(n-2),从而 a_n+a_(n-1)/a_(n-1)+a_(n-2)=3  相似文献   

6.
公式 a_n=S_n-S_(n-1)看似平常,其实内涵丰富,有着不寻常的功能和应用价值,本文举例如下:例1 已知数列{x_n),满足 x_1=b,x_(n 1)=cx_n d 且 c≠1.求通项公式.解:令 x_n=S_n则 S_(n 1)=cS_n d (1)S_n=cS_(n-1) d (2)(1)-(2)得a_(n 1)=ca_n=c~2a_(n-1)=…=c~(n-1)a_2∴x_n=S_n=a_1 a_2 … a_n  相似文献   

7.
<正>类型一:累加法形如:a_n=a_(n-1)+f(n)(其中f(n)不是常值函数)例1已知数列{a_n}满足a_1=3,2/a_n-a_(n+1)=n(n+1),则a_n=____。方法指导:先将递推公式变形为a_n-a_(n-1)=f(n),令n=2,3,4,…,n,再将这n-1个式子相加,得a_n-a_1=f(2)+f(3)+…+f(n)。所以,a_n=a_1+f(2)+f(3)+…+f(n)=a_1+  相似文献   

8.
一本杂志上刊登过如下一道题目: 题一:设,f(x)=(x~2-4)~(1/2)(x≤-2).(1)求f~(-1)(x);(2)设a_1=1,a_n=f~(-1)(a_(n-1))(n≥2,n∈N),求a_n;(3)求sum from i=1 to n 1/(a_1+a_i+1)的值该题作为函数与数列的综合题在教学中广为流传,通常简解如下解:(1)函数,f(x)=(x~2-4)~(1/2)(定义域为x≤—2,值域为y≥0)的反函数为f~(-1)(x)=-(x~2+4)~(1/2)(定义域为x≥0,值域为y≤-2) (2)∵a_1=1,a_n=f~(-1)(a_(n-1))由迭代法得:a_n=-(a_(n-1)~2+4)~(1/2)=-(a_(n-2)~2+2×4)~(1/2)=…=-(a_1~2+(n-1)4)~(1/2)=-(4n-3)~(1/2)(亦可由a_n~2=a_(n-1)~2+4,n=2,3,…n,累加而得) (3) 注意到 a_n~2-a_(n-1)~2=4,  相似文献   

9.
高中代数(甲种本)第二册77页上有这样一道习题: 已知数列{a_n}的项满足 a_1=b a_(n+1)=ca_n+d(c≠1),证明这个数列的通项公式是 a_n=(bc~n+(d-b)c~(n-1)-d)/(c-1) 我们把这题推广成: 已知数列{a_n}的项满足 a_1=a a_(n+1)-ba_n=c_0+c_1n+c_2n~2+…+c_mn~m,其中b≠0,求这个数列的通项公式. 这类问题,可以用待定系数法解决.以  相似文献   

10.
2005年江西省普通高校招生考试《数学(文科)》试卷的第22题,是全卷的最后一道题,带有压轴性质.其题目是:“已知数列{a_n}的前n项和 S_n 满足 S_n-S_(n-2)=3×(-1/2)~(n-1)(n≥3),且 S_1=1,S_2=-3/2,求数列{a_n}的通项公式”.考试到条件 S_n-S_(n-2)=a_n a_(n-1),故这道题考题实质上是已知数列递推关系 a_n a_(n-1)=mf(n) k 和起始值 a_1,求数列{a_n}的通项公式的问题.此类题型在多年高考中屡见  相似文献   

11.
<正>求递推数列的通项公式的方法较多,技巧性很强.本文主要探究形如a_(n+1)=pa_n+f(n)(p为常数,n∈N*)的递推数列通项公式的求法.一、引例例1已知数列{a_n}满足a_1=3,a_(n+1)=2a_n+5n+1(n∈N*),求该数列的通项公式.解(辅助数列法)由a_(n+1)=2a_n+5n+1,得a_(n+1)+5(n+1)+6=2(a_n+5n+6).(1)  相似文献   

12.
数列递推公式的意义:若已知数列的第一项a_1且任一项a_n与前一项a_(n-1)之间的关系可以用一个公式表示.类型1形如a_(n+1)=a_n+f(n).解法:把原递推公式转化为a_(n+1)-a_n=f(n),利用累加法(逐差相加法)求解.例1已知数列{a_n}满足a_1=1/2,a_(n+1)=  相似文献   

13.
两恒等式a_n=a_1·(a_2/a_1)……(a_n/a_(n-1))及a_n=a_1+(a_2-a_1)+…+(a_n-a_(n-1))分别被称之为等比恒等式与等差恒等式。在处理很多数列问题时,若能恰到好处地利用这两个恒等式,则会给求解带来很多方便,下面略举几例。 例1 (2002年浙江等21省市高考题)设数列{a_n}满足a_(n+1)=a_n~2-na_n+1,n∈N~+。 (1)当a_1=2时,求a_2、a_3、a_4,并由此猜想出a_n的一个通项公式。 (2)当a_1≥3时,证明对所有的n≥1有: (i)a_n≥n+2; (ii)1/(1+a_1)+1/(1+a_2)+…+1/(1+a_n)≥1/2。 简解:(1)略。 (2)(i)用数学归纳法:①当n=1,a_1≥3=1+2结论成立。  相似文献   

14.
已知数列{a_n}中,a_1=p,a_(n 1)=qa_n r,求通项公式a_n,其中p、q、r为常数,且q≠0,q≠1。 显然r=0时,a_(n 1)=qa_n,这时{a_n}为等比数列,易推得a_n=pq~(n-1);当r≠0,q=1,a_(n 1)=a_n r,{a_n}是等差数列,易推得a_n=a_1 (n-1)r。  相似文献   

15.
<正>江苏省南通市2010~2011学年高三第一学期期中调研考试文科卷第19题值得一看,从中我们可以得到一些启发与思考,这道题目是这样的:已知数列{a_n}满足a_n+a_(n+1)=4n-3(n∈N~*).(1)若数列{a_n}是等差数列,求a_1的值;(2)当a_1=2时,求数列{a_n}前n项的和  相似文献   

16.
递推方法     
(本讲适合高中) 数列是初等数学的一个重要内容.在解数列问题时,经常会遇到下面一类题目: 已知:数列{a_n}满足a_1=2,a_2=3,a_(n+1)=3a_n-2a_(n-1). 求数列{a_n}的通项公式. 这种已知初始值和递推公式求通项公式的题目相当多,探讨它们解法的文章也相当  相似文献   

17.
数列{a_n}中,a_1=1,a_(n+1)=1/(16)(1+4a_n+(1+24a_n)~(1/2)),求a_n.解:构建新数列{b_n},使b_n=(1+24a_n)~(1/2)>0,则b_1=5,b_n~2=1+24a_n(?)a_n=(b_n~2-1)/(24).由a_(n+1=1/16(1+4a_n+(1+24a_n)~(1/2)),得(b_(n+1)~2-1)/(24)=  相似文献   

18.
根据给出的数列的递推关系,求它的通项公式中,用特征方程求数列的通项公式,是非常有效的方法。例如,已知数列{a_n}具有关系a_1=3~(1/2),且a_(n+1)=1/2 a_n-3,求a_n的表达式,可用下面方法来解。∵a_(n+1)=1/2 a_n-3,把它两边同加上6,得a_(n+1)+6=1/2 a_n+3=1/2(a_n+6)。  相似文献   

19.
2007年高考山东理科数学第19题(以下简称试题1):设数列{a_n}满足a_1+3a_2+3~2a_3+…+3~(n-1)a_n=n/3,n∈N~*(Ⅰ)求数列{a_n}的通项;(Ⅱ)设b_n=n/a_n,求数列{b_n}的前n项和S_n.时隔仅二年,2009年高考湖北卷文科数学  相似文献   

20.
数列的通项公式揭示了这个数列的内在规律。中学教材中,对等差数列、等比数列作了重点介绍,本文想在此基础上作一些推广。首先我们定义:multiply from i=k to n f(i)=1(k>n) 定理一:在数列{a_n}中已知a_1且满足 a_n=f(n)a_(n-1)+g(n) (n=2,3,4…)则a_n=a multiply from i=2 to n f(i)+sum from i=2 to n[g(i) multiply from i=i to n-1 f(i+1)] 证明:1°n=2,右边=f(2)a_1+g(2)=a_2 2°假定当n=k时命题成立即  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号