首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
众知,周期函数的内容丰富而广泛,对它的周期判定,有关最小正周期的探讨均有论述,本文论述周期函数及其导函数的周期是否相同问题。周期函数的导函数是周期函数这是众知的,但它们的周期是否相同呢?[注]。定理1 设f(x)是连续周期函数,最小正周期为T,若其原函数F(x)满足F(0)=F(T),则F(x)也是以T为最小正周期的周期函数。  相似文献   

2.
判别一个函数是不是周期函数,求周期函数的周期,以及证明最小正周期等问题,一般都是利用定义解决的。若函数f(x)为周期函数,必有等式 f(x+T)=f(x)成立。这里要注意:(1)T必须是常数,且不为零。(2)上式必须对于定义域内的所有x值都成立。要判别函数f(x)是周期函数或者非周期函数,以及求周期函数的周期只要列出等式f(x+  相似文献   

3.
“如果f(x)是几个周期函数代数和的形式,那么就先求出这几个周期函数的周期,并以它们的最小公倍数做为f(x)的周期。”这是一些复习资料介绍的求函数周期(最小正周期)的方法。这种用最小公倍数来确定周期的方法使用方便,学生乐意套用。如f(x)=sinx-cosx/2,因为sinx的周期为2π,cos x/2的周期是4π,所以f(x)的周期是4π。但是这种方法是错误的,应该予以纠正。例如,求f(x)=ctgx-tgx的周期。显然,用最小公倍数法所得周  相似文献   

4.
求证:如果f(x)与g(x)是定义在同一集合M上的周期函数,周期分别是T_1与T_2,且T_1/T_2=a,而a是有理数,则它们的和、差与积也是M上的周期函数,且T_1与T_2的公倍数为其一个周期。证明:我们仅证和的情形。∵T_1与T_2分别是f(x)与g(x)的周期,且T_2/T_1是有理数,设T_1与T_2的最小公倍数为T  相似文献   

5.
有关周期函数的最小正周期的存在、求法的问题探讨不少。本文借助于周期函数的分析性质,确定其最小正周期。定理1 设f(x)为非常数的连续周期函数,T是其任一个正周期,若在[0,T]内函数最大值的点(最小值的点)的个数为m,那么,1)当m为质数时,其最小正周期T_0为T/M 或T;2)当m为合数时,其最小正周期T_0为T/K,其中K是m的某个约数。[注] 证明:因为f(x)是非常数连续函数,因此f(x)必定存有最小正周期,不妨令作T_0,而T是f(x)的任一个正同期,且在[0,T]  相似文献   

6.
了。有些周期函数有最小正周期,如y=sinx的最小正周期是2π,但有些周期函数却没有最小正周期,如常函数y=c(常数)任何非零常数都是它的周期,怎样的周期函数才有最小正周期呢?下述定理表明,“连续性”是周期函数具有最小正周期的充分条件。 定理2 设f(x)是周期函数,且f(x)是异于常数的连续函数,那么f(x)有最小正周期。 事实上f(x)的“整体连续性”条件还可以被条件“一点连续性”所代替。即,定理2可改成下述命题。  相似文献   

7.
求三角函数的周期是学生颇感困难的问题。本文将提供一种求三角函数周期的方法。就是按照题目给的条件先假设函数的最小正周期为T,由周期函数定义列出恒等式,再由恒等式的变形及定义,确定出与自变量无关的最小正常数T。 [例] 求下列函数的最小正周期: (1) y=cos3/2x+sin1/3x; (2) y=ctgπx-tgπx。解:(1)设函数y=cos3/2x+sin1/3x的最小正周期为T。由周期函数定义得:  相似文献   

8.
对于三角函数中的周期性内容的学习与把握 ,笔者认为应从如下四个方面进行 .1 正确理解周期函数的概念全日制高中数学第一册 (下 ) ,2 0 0 0年人教版第5 1页 ,给出了周期函数的定义 :“一般地 ,对于函数f(x) ,如果存在一个非零常数T ,使得当x取定义域内的每一个值时 ,都有 f(x+T) =f(x) ,那么函数f(x)就叫做周期函数 ,非零常数T叫做这个函数的周期 .”对于一个周期函数 f(x) ,如果在它所有的周期中存在一个最小的正数 ,那么这个最小正数就叫做f(x)的最小正周期 .对周期函数这一概念的理解 ,应注意以下几点 :(1)若 f(x)是周期函数 ,则其定…  相似文献   

9.
一、方程f(x)~(1/2)+g(x)~(1/2)=k(k>0)表明,(f(x)~(1/4),g(x)~(1/4)为圆f(x)~(1/2)=k~(1/2)(cost)g(x)~(1/4)=k~(1/2)(sint)与倾角为t之径线的交点坐标,因而可设 f(x)=k~2cos~4t g(x)=k~2sin~4t’通过三角变换直接或间接地解得x。例1.解方程 2x-1~(1/2)+x+3~(1/2)=4 解:设 2x-1=16cos~4t x+3=16sin~4t(1/2相似文献   

10.
设f1(x)和f2(x)都是集合M上的周期函数,T1、T2分别是它们的一个周期,若T1/T2∈Q,则它们的和差与积商也是M上的周期函数,T1与T2的公倍数为它们的一个周期.  相似文献   

11.
1.设 M 是直线上双方无界的集合,f(x)是 M 上的周期函数,用 T_f 表示 f(x)的一切周期所组成的数集,τ_1、τ_2∈T_f,如果τ_1/τ_2是无理数,我们称τ_1、τ_2是 f(x)的本质不同的周期.对于周期函数 f(x),是否存在本质不同的周期呢?先看实例.  相似文献   

12.
二、有关定理下面介绍的一系列定理,可以帮助判定函数的周期性或求出最小正周期。定理1 设f(x)、g(x)皆为定义在实数集R上的周期函数,T_1与T_2分别为f(x)与g(x)的正周期,当T_1/T_2等于有理数时,则f(x)±g(x),f(x)·g(x)均为定义在R上的周期函数,且T_1与T_2的公倍数是它们的周期。(未必是最小正周期) 证设T_1/T_2=p/q(p与q皆为正整数)令T=qT_1=pT_2则f(x±T)±g(x±T)=f(x±qT_1)±g(x±pT_2)=f(x)±g(x).所以f(x)±g(x)是周期函数,T为周期。对于f(x)·g(x),同理可证是以T为周期的函数。注(1)实数集R可用上、下无界数集E代替;(2)对于有限个函数,定理仍然  相似文献   

13.
一、原理若y=f(x)+g(x),仅当f(x),g(x)同时在某个x_0处取得最大(小)值,则在x_0处y取最大(小)值f(x_0)+g(x_0)。二、应用举例例1 求y=sin~2x+(2/(sin~2x)最值。解:y=(sin~2x+(1/(sin~2x)))+(1/(sin~2x)。设f(x)=sin~2x+(1/(sin~2x)≥2,g(x)=(1/(sin~2x)≥1。  相似文献   

14.
基本初等函数的周期性,我们比较熟悉.而由基本初等函数复合而成的初等函数,它的周期性的判定,则麻烦多了.本文试图通过几个例子和结论,谈谈非周期函数的判定. 一、从周期函数的定义域来判定由周期函数的定义知,周期函数的定义战必须是没有上界或者没有下界的,所以如果定义域有界,那么马上就可以断定此函数是非周期函数.如函数f(x)=sinx~(1/2)+cos(1-x)~(1/2)的定义域[0,1]是有界的,所以f(x)不是周期函数. 例1 求证函数f(x)=sin 1/x不是周期函数. 证明:∵f(x)的定义域是(-∞,0)∪(0,+∞), ∴如果f(z)是周期为T的函数,那么对任何x≠0,都有f(x+T)=f(x)成立,令x=-T≠0,得  相似文献   

15.
本刊92年第五期刊登了一篇题为“周期函数与其导函数的周期”的文章,该文证明了下述定理。定理非常值周期函数f(x)在R上有定义且连续,而f′(x)存在且可积,则f′(x)也为周期函数,并且f(x)与f′(x)有相同的周期。并举下例说明其应用。例设f(x)=x-2k,(2k≤r<2k+1) -x+2(k+1),k∈2 (2k+1≤x<2k+2) 则f(x)与f′(x)有相同的周期2。(见原文例3)。显然,上例中的f′(x)当x=k时,不存在,故上述例不满足定理之条件,故用上述定理得出其结果不妥。易见,条件“f′(x)存在且可积”是相当强的,以致于象f(x)=tgx这样常用的初等函数  相似文献   

16.
已知 (cos~4α)/(cos~2β) (sin~4α)/(sin~2β)=1,求证 (cos~4β)/(cos~2α) (sin~4β)/(sin~2α)=1。 这是一道数学竞赛题,公布的标准答案均较繁琐。本文将给出两种简洁的解法。 证法一: 设sin~2α=x,sin~2β=y,x、y∈(0,1),则由已知有:x~2/y (1-x)~2/(1-y)=1 ①变形为 x~2(1-y) y(1-x)~2=y(1-y),即 (x-y)~2=0,∴ x=y,由此,①可写为:y~2/x (1-y)~2/(1-x)=1,  相似文献   

17.
关于周期函数f(x)的倒数函数1/(f(x))的周期性,文[1]是这样叙述的:“若f(x)是集M上的周期函数,则1/(f(x))是集{x|f(x)≠0,x∈M}上的周期函数。若f(x)有最小正周期T则1/(f(x))也有最小正周期T。”该定理的后半段是不正确的。文[2)曾给出一反例如下。  相似文献   

18.
很多常见的不等式证明问题,都可以灵活地运用二元均值不等式x y≥2√(xy)~(1/2)(其中x,y∈R~ )方便地解决。这里借用文[1]的两个较复杂的例子,说明其运用技巧。 例1 设α,β,γ均为锐角,且 sin~2α sin~2β sin~2γ=1, 求证:sin~3α/sinβ sin~3β/sinγ sin~3γ/sinα≥1。 这是文[1]中的例4,此处直接用二元均值不等式简证如下:  相似文献   

19.
<正> 命题1 如果对于函数f(x)的定义域内任意一个x,都有f(x+T)=f(x-T)那么f(x)是周期函数,2T为它的一个周期证∵f(x+2T)=f[(x+T)+T] =f[(x=T)-T]=f(x)∴f(x)为周期函数,并且2T是它的一个周期.命题2 如果对于函数f(x)的定义域内任意一个x,都有  相似文献   

20.
中学生在数学练习中 ,有些问题稍不留意 ,就会出现错误 ,如何快捷有效地避免这种无形错误 ,本文作些分析探讨 1 关于函数的最小正周期例 1:求函数f (x) =2tanx1-tan2x的最小正周期错解 :原函数式化简为f (x) =tan2x ,所以周期为 π2正解 :显然原函数的定义域为 {x︱x≠kπ π2 且x≠ kπ2 π4 (k∈Z) } ,化简后 ,定义域为{x︱x≠kπ π4 (k∈Z) } ,定义域扩大了 ,所以周期未必相同 ,那怎样求周期呢 ,一般参考书的方法是 :首先作出y =tan2x的图象 ,如图 1:图 1  原函数的图象 ,只是去掉x≠kπ π2 (k∈Z)所对应的点 ,从去掉的几个点看 ,原函数的周期为π 这种方法虽然可以求出周期 ,但图形要画足够“宽” ,才能看出 ,不易把握 现在我们来看 ,有什么规律 ,不画出图象 ,就可直接求出周期 由函数的周期的定义容易证明 ,下面结论 :结论 1:若函数f (x)化简后的函数为f1(x) ,f1(x) ,的最小正周期为T1,函数f (x)的间断点的最小正周期为T2 ,则f (x)的最小正周期为T1,T2 的最小公倍...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号