首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在有限区间I上定义的有界函数f(x)为Riemann可积的充要条件是f(x)在I上α.e.连续,因此几乎处处有有限的极限.相反,由极限(单侧极限)几乎处处存在也可断言f(x)在I上a.e.连续,因而是Riemann可积的.  相似文献   

2.
微积分基本定理通常叙述为: 若f(x)在[a,b]上连续,则 〈1〉Φ(x)=integral from n=a to x(f(x)dx)是f(x)在[a,b]上的一个原函数,即Φ’(x)=f(x)x∈[a,b]; 〈2〉若F(x)是f(x)在[a,b]上的任一原函数,则 integral from n=a to b(f(x)dx=F(b)-F(a)) (称为牛顿—菜布尼兹公式) 此定理就其对微积分的重要性来讲,称之为基本  相似文献   

3.
一按段光滑函数的两种定义的比较多数《数学分析》教程是这样定义按段光滑函数的: 定义1如果函数f(x)在区间(a,b)上除可能有有限个第一类不连续点外,处处都连续,则称函数f(x)在(a,b)上按段连续。定义2 如果函数f(x)满足以下条件:1)函数f(x)在区间(a,b)上按段连续;2)导函数f′(x)在区间(a,b)上也按段连续,则称函数f(x)在区间(a,b)上按段光滑。有的《数学分析》教程,如华东师范大学数学系编《数学分析》下册里,又是这样定义按段光滑函数的: 定义3 若f(x)的导函数f′(x)在区间(a,b)上连续,则称f(x)在(a,6)上光滑.但若定义在(a,b)上的函数的导函数,f′(x)在(a,b)上除了至多有限个点外都存在且连续,在这有  相似文献   

4.
本文利用微积分学的理论证明了如下结论:设f(x)在[a,b]上黎曼可积,函数g(x)在[a,b]上满足李普希兹条件,且几乎处处有g(x)=f(x),则integral from n=1 to ∞(f(x)dx)=g(b)-g(a)。  相似文献   

5.
二次函数f(x)=ax~2 bx C(a、b、C∈R,a≠0)有两个重要性质: (1)f(x)的图象有唯一的对称轴x=-(b/2a),且在对称轴左、右两侧对应的区间(-∞,-(b/2a)]与[-(b/2a) ∞)上,f(x)具有相反的单调性;  相似文献   

6.
解决函数零点存在问题常使用函数零点存在定理:函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间(a,b)上有零点.但这个定理的逆命题是不成立的,即函数y=f(x)在开区间(a,b)上有零点,则f(a)f(b)<0不一定成立,所以定理中的条件仅是函数f(x)在(a,b)上有零点的充分条件,而不是充要条件.  相似文献   

7.
函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。一、函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a.b)对称的充要条件是:f(x) f(2a-x)=2b推论:函数y=f(x)的图像关于原点O对称的充要条件是:f(x) f(-x)=0定理2.函数f=f(x)的图像关于直线x=a对称的充要条件是:f(a x)=f(a-x)即f(x)=f(2a-x)推论:函数y=f(x)的图像关于y轴对称的充要条件是:f(x)=f(-x)定理3①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。二、不同函数对称性的探究定理4.函数y=f(x)与y=2b-f...  相似文献   

8.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

9.
我们利用一致收敛原理研究级数和的函数性质时,有定理:设函数u_n(x)(n=1,2,…)定义在区间[a,b]上,且连续,如果级数sum from n=1 from ∞ u_n(x)在[a,b]上一致收敛,那么级数和f(x)在(a,b)上是连续的。这里对级数和f(x)的连续性而言,一致收敛性只是充分条件,而不是必要条件。充分性的证明不难作出,关于条件的非必要性也不难用例子表明。例如级数  相似文献   

10.
结论1设a、b为常数,则函数y=f(x)的图象与函数y=g(x)的图象关于直线x=a+b/2对称的充要条件是:对任意实数x,都有f(a+x)= g(b-x).证明:(1)充分性:设点P(a+x0,y0)是函数y=f(x)的图象上任意  相似文献   

11.
积分中值定理在一般的《数学分析》教材中是这样叙述的:当f(x)在[a,b]上连续时,有baf(x)dx=f(ξ)(b-1),其中ξ∈[a,b}本将对该结论做一点推广,即当f(x)在[a,b]上连续时,有baf(x)dx=f(ξ)(b-a),其中g∈(a,b)。  相似文献   

12.
《数学分析》中证明了闭区间[a,b]上的连续函数是可积的,而[a,b]上的可积函数不一定连续。那么,[a,b]上的可积函数能否在[a,b]上处处不连续呢?这个问题一般在《数学分析》中不加讨论,在《实变函数》中有了测度论的知识后可以给出完满的解答。这里用《数学分析》的方法对这个问题进行探讨,无疑对《数学分析》的教与学是有好处的。 定理 若函数f(x)在闭区间[a,b]上黎曼可积,则f(x)在[a,b]上至少有一个连续点。  相似文献   

13.
在数学分析的教学过程中,要想证明“数b是函数f(x)在点a的极限”、“函数f(x)在点口连续”和“函数f(x)在‘a,b’上一致连续”等命题是比较容易的,然而要证明这些命题的否定形式,即“数b不是函数f(x)在点a的极限”、“函数f(x)在点a不连续”和“函数f(x)在‘a,b’上不一致连续”等否定命题时,学生就倍感棘手,教师讲解时往往也不太容易表达清楚,为此,笔者想借助数理逻辑作为工具,对该类问题证明的逻辑基础予以剖析,供大家参考。  相似文献   

14.
有限闭区间上的连续函数,其基本定理中的介值定理、有界性定理和一致连续性定理,在多数教材中,常采用反证法或Borel有限覆盖定理加以证明。M·Spivak在其教材中,用Lebesgue方法证明了介值定理和有界性定理。本文说明:运用Lebesgue方法可以证明一致连续性定理。定理设f(x)在有限闭区间[a,b]上连续,则f(x)在[a,b]上一致连续。证明任意给定ε>0,作集合  相似文献   

15.
在一般教科书中积分中值定理都叙述为:设f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则存在ξ∈[a,b),使得 (integral from n=a to b)f(x)g(x)dx=f(ξ)(integral from n=a to b)g(x)dx。杨新民在[1]中提出了相反的问题:若f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,对[a,b)内每一点ξ能否找到c,d∈(a,b),满足c<ξ相似文献   

16.
在古典数学分析中,Cauchy中值定理是:若函数f(x)与(?)(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且对任意x∈(a,b)(?)′(x)≠0,则在(a/b)内存在一点C,使得f(b)-f(a)/(?)(b)-(?)(a)=f′(c)/(?)′(c)如果令(?)(x)=x,得  相似文献   

17.
题 已知a>0,函数f(x)=ax-bx2. (Ⅰ)当b>0时,若对任意x∈R都有f(x)≤1,证明:a≤2b; (Ⅱ)当b>1时,证明:对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2b;  相似文献   

18.
若函数f(x)在区间[a,b]上的图象是一条连续曲线,并有f(a) f(b)<0,则函数f(x) 在区间(a,b)内有零点,即存在c∈(a,b),使 f(c)=0.  相似文献   

19.
“若函数f(x)与g(x)满足下列条件:①在闭区间[a,b]上连续;②在开区间(a,b)内可导,且对任意x∈(a,b),g′(x)≠0。则在(a,b)内至少存在一点ξ,使 (f(b)-f(a))/(g(b)-g(a))=f′(ξ)/g′(ξ) (*)” 众所周知,这是微分学的基本定理之一:柯西中值定理((*)式称为微分中值公式)。关于它的证明,关健是在于恰当地构造一个辅助函数,再利用罗尔定理。一般教科书上构造的辅助函数是:F(x)=f(x)-f(a)-(f(b)-f(a))/(g(b)-g(a))[g(x)-g(a)]  相似文献   

20.
孙兰敏 《考试周刊》2012,(57):47-47
本文根据上凸函数的定义,证明了若f(x)是区间I内的上凸函数,则f(x)在区间I内连续,从而进一步得出结论:若f(x)是区间I内的上凸函数,则对任意的[a,b]奂I,f(x)在区间[a,b]上有界、可积.并说明了上凸函数的连续性、有界性和可积性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号