首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Team‐based learning (TBL) is an instructional strategy that combines independent out‐of‐class preparation for in‐class discussion in small groups. This approach has been successfully adopted by a number of medical educators. This strategy allowed us to eliminate anatomy lectures and incorporate small‐group active learning. Although our strategy is a modified use of classical TBL, in the text, we use the standard terminology of TBL for simplicity. We have modified classical TBL to fit our curricular needs and approach. Anatomy lectures were replaced with TBL activities that required pre‐class reading of assigned materials, an individual self‐assessment quiz, discussion of learning issues derived from the reading assignments, and then the group retaking the same quiz for discussion and deeper learning. Students' performances and their educational experiences in the TBL format were compared with the traditional lecture approach. We offer several in‐house unit exams and a final comprehensive subject exam provided by the National Board of Medical Examiners. The students performed better in all exams following the TBL approach compared to traditional lecture‐based teaching. Students acknowledged that TBL encouraged them to study regularly, allowed them to actively teach and learn from peers, and this served to improve their own exam performances. We found that a TBL approach in teaching anatomy allowed us to create an active learning environment that helped to improve students' performances. Based on our experience, other preclinical courses are now piloting TBL. Anat Sci Ed 1:3–9, 2008. © 2007 American Association of Anatomists.  相似文献   

2.
As part of an institutional program sponsored by the Centre for Teaching Excellence at the Universidad del Norte, Barranquilla, Colombia, we developed an educational research study on two sessions of human anatomy in which we combined team‐based learning (TBL) and the use of iPads. Study data included the TBL, assessments applied during the course, student's grades on mid‐term examinations and students' perceptions of their experiences. Students reported a positive attitude toward the use of the TBL sessions, and the results showed a significant improvement in their learning between the first and second sessions. Significantly positive correlations (P < 0.05) were obtained between (a) the individual students' readiness test performance 1 and mid‐term examination 1, (b) the individual readiness test performances from Session 1 to Session 2, and (c) the group readiness test performances from the first and second sessions. These results point to positive learning experiences for these students. Analyses of the students' reflections on their activities also pointed toward future challenges. Anat Sci Educ 7: 399–405. © 2014 American Association of Anatomists.  相似文献   

3.
Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self‐directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self‐directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Anat Sci Educ 6: 114–124. © 2012 American Association of Anatomists.  相似文献   

4.
Team‐based learning (TBL) combines independent out of class preparation with in class small group discussion. We adopted TBL in teaching first year medical gross anatomy. In this study, we evaluated student perceptions of TBL by using a survey that elicited perceptions of both pedagogy and mode of learning. Anatomy lectures were replaced with required preclass readings, self‐assessment quizzes, small group discussions of assignments, and groups retaking the same quizzes for deeper learning. At the course conclusion, students were surveyed to assess their preference for TBL, their perceptions of TBL effectiveness, and their perceptions of successful interpersonal relationships within groups. Respondents (n = 317; 89% response) were asked to rate the extent that they agreed (?2 = strongly disagree; ?1 = disagree; 0 = neutral; 1 = agree; and 2 = strongly agree). A principal components factor analysis with varimax rotation identified two 8‐item factors: “perceptions of TBL” and “perceptions of teamwork.” Internal consistency for each was high [Cronbach's alpha = 0.908 (preference for TBL); 0.884 (preference of teamwork)]. Results of one‐way analysis of variance between Honors/High Pass/Pass/Fail students indicated that Honors (n = 73) tended to rate perceptions of TBL higher than Pass (n = 54) [mean difference = 2.92; 95% CI (0.05, 5.79)], and also higher than Fail (n = 11) [mean difference = 6.30; 95% CI (1.13, 11.47)]. However, each had overallpositive ratings. No difference was noted between mean ratings of teamwork, which were also, overall, positive. We conclude that medical students view TBL favorably irrespective of their grades. Anat Sci Educ 2:150–155, 2009. © 2009 American Association of Anatomists.  相似文献   

5.
Areas of difficulty faced by our veterinary medicine students, with respect to their learning in dissection classes, were identified. These challenges were both general adult‐learning related and specific to the discipline of anatomy. Our aim was to design, implement, and evaluate a modified reciprocal peer‐assisted/team‐based learning format—Doing Dissections Differently (DDD)—to complement existing dissection classes, with the intention of enhancing both student learning and the student learning experience. Second year veterinary medicine students (n = 193), in their usual dissection groups, were randomly assigned to one of four roles: anatomist, clinician, radiologist, and learning resources manager. Students attended a preparatory workshop outlining the skills required for effective execution of their role. They were then asked to perform their roles throughout five consecutive musculoskeletal dissection classes. Student attitudes to dissection classes before and after DDD were evaluated by questionnaire (146 respondents). There was a significant (P = 0.0001) improvement after DDD in a number of areas: increased perceived value of dissection classes as an anatomy learning aid; improved appreciation of the clinical relevance of anatomy; increased use of resources before and during dissection classes; and longer preparation time for dissection classes. Before DDD, 45% of students felt that at least one peer did not contribute usefully to the group during dissection classes; no improvement was seen in this measure after DDD. Although the new format highlighted a potential need to improve teamwork, most students actively engaged with DDD, with dissection classes valued more highly and utilized more effectively. © 2012 American Association of Anatomists.  相似文献   

6.
The ability to deliver sufficient core anatomical knowledge and understanding to medical students with limited time and resources remains a major challenge for anatomy educators. Here, we report the results of switching from a primarily didactic method of teaching to supported self-directed learning for students studying anatomy as part of undergraduate medicine at the University of Edinburgh. The supported self-directed approach we have developed makes use of an integrated range of resources, including formal lectures and practical sessions (incorporating gross anatomy specimens, medical imaging technologies, anatomical models, clinical scenarios, and surface anatomy workstations). In practical sessions, students are provided with a custom-made workbook that guides them through each session, with academic staff, postgraduate tutors, and near-peer teaching assistants present to deal with misunderstandings and explain more complicated topics. This approach retains many of the best attributes of didactic teaching but blends them with the advantages associated with self-directed learning approaches. The switch to supported self-directed learning-initially introduced in 2005-resulted in a significant improvement in anatomy examination scores over the subsequent period of five years, manifesting as an increase in the average anatomy practical spot examination mark, less students failing to obtain the pass mark and more students passing with distinction. We conclude that the introduction of supported self-directed learning improved students' engagement, leading to deeper learning and better understanding and knowledge of anatomy.  相似文献   

7.
Anatomy students studying dissected anatomical specimens were subjected to either a loosely‐guided, self‐directed learning environment or a strictly‐guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly‐guided gross anatomy laboratory sessions lead to higher learning gains than loosely‐guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second‐year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station‐based laboratory sessions; the other half, the control group, to loosely‐guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly‐guided group scored higher than the loosely‐guided group at all time‐points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between‐subject effect (P ≤ 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly‐guided group than for the loosely‐guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

8.
It has become increasingly apparent that no single method for teaching anatomy is able to provide supremacy over another. In an effort to consolidate and enhance learning, a modernized anatomy curriculum was devised by attempting to take advantage of and maximize the benefits from different teaching methods. Both the more traditional approaches to anatomy teaching, as well as modern, innovative educational programs were embraced in a multimodal system implemented over a decade. In this effort, traditional teaching with lectures and dissection was supplemented with models, imaging, computer‐assisted learning, problem‐based learning through clinical cases, surface anatomy, clinical correlation lectures, peer teaching and team‐based learning. Here, we review current thinking in medical education and present our transition from a passive, didactic, highly detailed anatomy course of the past, to a more interactive, as well as functionally and clinically relevant anatomy curriculum over the course of a decade. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

9.
A technology enhanced learning and teaching (TELT) solution, radiological anatomy (RA) eLearning, composed of a range of identification‐based and guided learning activities related to normal and pathological X‐ray images, was devised for the Year 1 nervous and locomotor course at the Faculty of Medicine, University of Southampton. Its effectiveness was evaluated using a questionnaire, pre‐ and post‐tests, focus groups, summative assessment, and tracking data. Since introduced in 2009, a total of 781 students have used RA eLearning, and among them 167 Year 1 students in 2011, of whom 116 participated in the evaluation study. Students enjoyed learning (77%) with RA eLearning, found it was easy to use (81%) and actively engaged them in their learning (75%), all of which were associated to the usability, learning design of the TELT solution and its integration in the curriculum; 80% of students reported RA eLearning helped their revision of anatomy and 69% stated that it facilitated their application of anatomy in a clinical context, both of which were associated with the benefits offered by the learning and activities design. At the end of course summative assessment, student knowledge of RA eLearning relevant topics (mean 80%; SD ±16) was significantly better as compared to topics not relevant to RA eLearning (mean 63%; SD ±15) (mean difference 18%; 95% CI 15% to 20%; P < 0.001). A well designed and integrated TELT solution can be an efficient method for facilitating the application, integration, and contextualization of anatomy and radiology to create a blended learning environment. Anat Sci Educ 7: 350–360. © 2013 American Association of Anatomists.  相似文献   

10.
Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi‐disciplinary care team. This study aimed to create a modified team‐based learning (TBL) environment utilizing ultrasound technology during an interprofessional learning activity to enhance musculoskeletal anatomy knowledge of first year medical (MD) and physical therapy (PT) students. An ultrasound demonstration of structures of the upper limb was incorporated into the gross anatomy courses for first‐year MD (n = 53) and PT (n = 28) students. Immediately before the learning experience, all students took an individual readiness assurance test (iRAT) based on clinical concepts regarding the assigned study material. Students observed while a physical medicine and rehabilitation physician demonstrated the use of ultrasound as a diagnostic and procedural tool for the shoulder and elbow. Following the demonstration, students worked within interprofessional teams (n = 14 teams, 5–6 students per team) to review the related anatomy on dissected specimens. At the end of the session, students worked within interprofessional teams to complete a collaborative clinical case‐based multiple choice post‐test. Team scores were compared to the mean individual score within each team with the Wilcoxon signed‐rank test. Students scored higher on the collaborative post‐test (95.2 ±10.2%) than on the iRAT (66.1 ± 13.9% for MD students and 76.2 ±14.2% for PT students, P < 0.0001). Results suggest that this interprofessional team activity facilitated an improved understanding and clinical application of anatomy. Anat Sci Educ 11: 94–99. © 2017 American Association of Anatomists.  相似文献   

11.
Problem‐based learning (PBL) has been introduced to medical schools around the world and has increasingly become a popular pedagogical technique in Asian countries since 1990. Gross anatomy is a fundamental basic science course in virtually all medical training programs, and the methods used to teach it are under frequent scrutiny and revision. Students often struggle with the vast collection of new terms and complex relationships between structures that they must learn. To help students with this process, our department teaches separate systemic and regional anatomy courses, the latter in a PBL format. After three years of using PBL in our regional anatomy course, we have worked out a set of effective instructions that we would like to share with other medical schools. We report here evidence that our clinical PBL approach stimulates students' interest in learning and enhances anatomy education in a way that can foster better practices in our future medical work force. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

12.
The use of two‐dimensional (2D) images is consistently used to prepare anatomy students for handling real specimen. This study examined whether the quality of 2D images is a critical component in anatomy learning. The visual clarity and consistency of 2D anatomical images was systematically manipulated to produce low‐quality and high‐quality images of the human hand and human eye. On day 0, participants learned about each anatomical specimen from paper booklets using either low‐quality or high‐quality images, and then completed a comprehension test using either 2D images or three‐dimensional (3D) cadaveric specimens. On day 1, participants relearned each booklet, and on day 2 participants completed a final comprehension test using either 2D images or 3D cadaveric specimens. The effect of image quality on learning varied according to anatomical content, with high‐quality images having a greater effect on improving learning of hand anatomy than eye anatomy (high‐quality vs. low‐quality for hand anatomy P = 0.018; high‐quality vs. low‐quality for eye anatomy P = 0.247). Also, the benefit of high‐quality images on hand anatomy learning was restricted to performance on short‐answer (SA) questions immediately after learning (high‐quality vs. low‐quality on SA questions P = 0.018), but did not apply to performance on multiple‐choice (MC) questions (high‐quality vs. low‐quality on MC questions P = 0.109) or after participants had an additional learning opportunity (24 hours later) with anatomy content (high vs. low on SA questions P = 0.643). This study underscores the limited impact of image quality on anatomy learning, and questions whether investment in enhancing image quality of learning aids significantly promotes knowledge development. Anat Sci Educ 10: 249–261. © 2016 American Association of Anatomists.  相似文献   

13.
The Anatomy Learning Experiences Questionnaire (ALEQ) was designed by Smith and Mathias to explore students' perceptions and experiences of learning anatomy. In this study, the psychometric properties of a slightly altered 34‐item ALEQ (ALEQ‐34) were evaluated, and correlations with learning outcomes investigated, by surveying first‐ and second‐year undergraduate medical students; 181 usable responses were obtained (75% response rate). Psychometric analysis demonstrated overall good reliability (Cronbach's alpha of 0.85). Exploratory factor analysis yielded a 27‐item, three‐factor solution (ALEQ‐27, Cronbach's alpha of 0.86), described as: (Factor 1) (Reversed) challenges in learning anatomy, (Factor 2) Applications and importance of anatomy, and (Factor 3) Learning in the dissection laboratory. Second‐year students had somewhat greater challenges and less positive attitudes in learning anatomy than first‐year students. Females reported slightly greater challenges and less confidence in learning anatomy than males. Total scores on summative gross anatomy examination questions correlated with ALEQ‐27, Pearson's r = 0.222 and 0.271, in years 1 and 2, respectively, and with Factor 1, r = 0.479 and 0.317 (all statistically significant). Factor 1 also had similar correlations across different question types (multiple choice; short answer or essay; cadaveric; and anatomical models, bones, or radiological images). In a retrospective analysis, Factor 1 predicted poor end‐of‐semester anatomy examination results in year 1 with a sensitivity of 88% and positive predictive value of 33%. Further development of ALEQ‐27 may enable deeper understanding of students' learning of anatomy, and its ten‐item Factor 1 may be a useful screening tool to identify at‐risk students. Anat Sci Educ 10: 514–527. © 2017 American Association of Anatomists.  相似文献   

14.
Cultural influences on anatomy teaching and learning have been investigated by application of a questionnaire to medical students in British and Chinese Medical Schools. Results from the responses from students of the two countries were analyzed. Both groups found it easier to understand anatomy in a clinical context, and in both countries, student learning was driven by assessment. Curriculum design differences may have contributed to the British view wherein students were less likely to feel time pressure and enjoyed studying anatomy more than their Chinese counterparts. Different teaching approaches resulted in British students being more likely to recite definitions to learn, and the Chinese students found learning from cross‐sectional images easy. Cultural differences may account for the observation that British students were more inclined to ask questions in class, and the preference of Chinese students to study in small groups. The findings give evidence to show how ‘cultures of learning’ influence students' approaches and indicate the importance of cultural influences as factors amongst international and home learner groups. Anat Sci Ed 2:49–60, 2009. © 2009 American Association of Anatomists.  相似文献   

15.
Despite advances to move anatomy education away from its didactic history, there is a continued need for students to contextualize their studies to make learning more meaningful. This article investigates authentic learning in the context of an inquiry‐based approach to learning human gross anatomy. Utilizing a case‐study design with three groups of students (n = 18) and their facilitators (n = 3), methods of classroom observations, interviews, and artifact collection were utilized to investigate students' experiences of learning through an inquiry project. Qualitative data analysis through open and selective coding produced common meaningful themes of group and student experiences. Overall results demonstrate how the project served as a unique learning experience where learners engaged in the opportunity to make sense of anatomy in context of their interests and wider interdisciplinary considerations through collaborative, group‐based investigation. Results were further considered in context of theoretical frameworks of inquiry‐based and authentic learning. Results from this study demonstrate how students can engage anatomical understandings to inquire and apply disciplinary considerations to their personal lives and the world around them. Anat Sci Educ 10: 538–548. © 2017 American Association of Anatomists.  相似文献   

16.
This pilot study compared the use of an enriched multimedia eBook with traditional methods for teaching the gross anatomy of the heart and great vessels. Seventy‐one first‐year students from an Australian medical school participated in the study. Students' abilities were examined by pretest, intervention, and post‐test measurements. Perceptions and attitudes toward eBook technology were examined by survey questions. Results indicated a strongly positive user experience coupled with increased marks; however, there were no statistically significant results for the eBook method of delivery alone outperforming the traditional anatomy practical session. Results did show a statistically significant difference in the final marks achieved based on the sequencing of the learning modalities. With initial interaction with the multimedia content followed by active experimentation in the anatomy lab, students' performance was improved in the final test. Obtained data support the role of eBook technology in modern anatomy curriculum being a useful adjunct to traditional methods. Further study is needed to investigate the importance of sequencing of teaching interventions. Anat Sci Educ. 7: 19–27. © 2013 American Association of Anatomists.  相似文献   

17.
18.
The purpose of the present pilot study was to evaluate the benefits of innovative teaching methodologies introduced to final year occupational and physical therapy students in Christian Medical College in India. Students' satisfactions along the long-term retention of knowledge and clinical application of the respiratory anatomy have been assessed. The final year undergraduate physical therapy and occupational therapy students had respiratory anatomy teaching over two sessions. The teaching involved case-based learning and integrated anatomy lectures (vertical integration) with the Anatomy department. Pretest and immediate and follow-up post-tests were conducted to assess the effectiveness of the innovative methods. A feedback questionnaire was marked to grade case-based learning. The method of integrated and case-based teaching was appreciated and found to be useful in imparting knowledge to the students. Students retained the gained knowledge adequately and the same was inferred by statistically significant improvement in both post-test scores. Vertical integration of anatomy in the final year reinforces their existing knowledge of anatomy. Case-based learning may facilitate the development of effective and clinically sound therapists.  相似文献   

19.
Near-peer teaching is an educational format which utilizes tutors who are more advanced in a curriculum's content to supervise students' activities and to act as instructors in laboratory settings. This format is often used in anatomy laboratory courses. The goal of the present study is to describe the design and implementation of near-peer teaching in an anatomy course and to evaluate students' perceptions of the program. A total of 700 students were registered for this anatomy course which employed near-peer instructors. Of enrolled students, 558 (79.7%) agreed to participate in this study. In general, the practical section (e.g., the clinical hour, image-based anatomy session, and gross anatomy laboratory) of the course was viewed more favorably compared to the theory section (54.8%, n = 306), with dissection and prosection in the laboratory rated as the most valued experiences (34.9%, n = 195). Near-peer teaching is a viable option that satisfies the demands of modern curricula using small groups. This format stimulates learning within courses that have large numbers of students and low faculty-to-student ratios.  相似文献   

20.
Living AnatoME, a program designed in 2004 by two medical students in conjunction with the Director of Anatomy, teaches musculoskeletal anatomy through yoga and Pilates. Previously offered as an adjunct to the Gross Anatomy course in 2007, Living AnatoME became an official part of the curriculum. Previous research conducted on the program demonstrated its efficacy in providing relaxation and well-being to students who attended. In 2007, with all 144 gross anatomy students required to participate in a 1.5 hour Living AnatoME session on the upper and lower limbs, the impact of the program on students' comprehension of musculoskeletal anatomy was analyzed through the administration of 25-question pre- and post-tests, gauging knowledge in the following domains: upper limb, lower limb, muscle function, palpation, attachment/location, clinical correlate, and control (i.e., material not emphasized during the intervention). Analysis of postintervention tests revealed significant improvement in total Living AnatoME scores as well as in the domains of upper limb, muscle function, and palpation, indicating the possible efficacy of Living AnatoME in teaching anatomy. Performance on control questions also improved, although not significantly, which may indicate the role of other variables (e.g., additional study time) in increased performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号