首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research into classroom interactions has shown that talk that promotes reasoning can help children in their learning of science. Such talk can only be generated when teachers are willing to take a dialogic approach that is stimulating and provides opportunities for children to articulate their ideas. This research set out to determine whether the use of large puppets would help teachers to change the nature of their whole class discourse to enhance children’s talk and engagement in science. The study was carried out with sixteen teachers of children aged 7–11 years in schools in London and Manchester, UK. Through adopting a mixture of research methods, including classroom observation and teacher and child interviews, the research provides evidence that the use of puppets significantly increases the amount of teacher discourse oriented towards reasoning and argument, and decreases the amount of talk that focuses on recall. Through the puppets, teachers also use more narrative to set the science in stimulating contexts, and encourage children in their contributions to whole class discussion. Interview data also show the positive effects of puppets on children’s motivation and engagement in science. The findings have led to further major funding for professional development in the use of puppets in the UK, and research into the reasons why the use of puppets is so effective.  相似文献   

2.
Classroom discourse can affect various aspects of student learning in science. The present study examines interactions between classroom discourse, specifically teacher questioning, and related student cognitive engagement in middle school science. Observations were conducted throughout the school year in 10 middle school science classrooms using the Electronic Quality of Inquiry Protocol, which is designed, among other things, to measure observable aspects of student cognitive engagement and discourse factors during science instruction. Results from these observations indicate positive correlations between students’ cognitive engagement and the following aspects of classroom discourse: questioning level, complexity of questions, questioning ecology, communication patterns, and classroom interactions. A sequential explanatory mixed-methods design provides a detailed look at each aspect of classroom discourse which showed a positive effect on student cognitive level during science instruction. Implications for classroom practice, teacher education, and professional development are discussed.  相似文献   

3.
In recent years there has been an increased focus on the need for teachers to develop learning communities where all students have opportunities to engage in interactive discourse. However, there are few studies that focus on student perceptions and accounts of mathematical reasoning in classrooms with interactive mathematical talk as a focus of reform. A framework of teacher actions to develop classroom and mathematical practices was developed from classroom observations. Photo-elicitation interviews were used to investigate student perception and accounts of mathematical explanations and reasoning. The professional development programme, shifts in the teacher actions, and subsequent shifts in student perception and their recall of their own and peers’ mathematical reasoning over a school year are highlighted. Developing interactive dialogue in the classroom took considerable time and attention. Facilitating change to the way students both participated and understood their obligations required constant, ongoing attention to both the classroom and mathematical practices.  相似文献   

4.
As student–teacher–scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student–teacher–scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students’ access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.  相似文献   

5.
We investigated how prospective teachers used physics content knowledge when analyzing the talk of elementary children during special activities in an undergraduate physics content course designed for prospective teachers. We found that prospective teachers used content knowledge to reflect on their own learning and to identify students’ science ideas and restate these ideas in scientific terms. Based on this research, we inferred that analyzing children’s ideas through videos provides a meaningful context for applying conceptual physics knowledge in physics courses. Activities that are embedded within a disciplinary curriculum, such as those studied here, may help prospective teachers learn to use disciplinary knowledge in exactly the type of activity in which their content knowledge will be most useful: listening to and interpreting children’s science ideas.  相似文献   

6.
In this theoretical article we use an interpretative study with physics undergraduates to exemplify a proposed characterization of student learning in university science in terms of fluency in disciplinary discourse. Drawing on ideas from a number of different sources in the literature, we characterize what we call “disciplinary discourse” as the complex of representations, tools and activities of a discipline, describing how it can be seen as being made up of various “modes”. For university science, examples of these modes are: spoken and written language, mathematics, gesture, images (including pictures, graphs and diagrams), tools (such as experimental apparatus and measurement equipment), and activities (such as ways of working—both practice and praxis, analytical routines, actions, etc.). Using physics as an illustrative example, we discuss the relationship between the ways of knowing that constitute a discipline and the modes of disciplinary discourse used to represent this knowing. The data comes from stimulated recall interviews where physics undergraduates discuss their learning experiences during lectures. These interviews are used to anecdotally illustrate our proposed characterization of learning and its associated theoretical constructs. Students describe a repetitive practice aspect to their learning, which we suggest is necessary for achieving fluency in the various modes of disciplinary discourse. Here we found instances of discourse imitation, where students are seemingly fluent in one or more modes of disciplinary discourse without having related this to a teacher‐intended disciplinary way of knowing. The examples lead to the suggestion that fluency in a critical constellation of modes of disciplinary discourse may be a necessary (though not always sufficient) condition for gaining meaningful holistic access to disciplinary ways of knowing. One implication is that in order to be effective, science teachers need to know which modes are critical for an understanding of the material they wish to teach. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 46: 27–49, 2009  相似文献   

7.
Follow-up research is required to investigate the effects of our beginning teacher preparation programs for secondary science teachers on classroom performance, student achievement, and higher order mental functioning of classroom teachers. Nevertheless, preliminary indications from working with students during the last several years show many encouraging outcomes among beginning teachers, including: increased knowledge of cognitive science, especially applications in instruction and learning; development of more analytical, self-directed classroom behavior; and enhanced capability of utilizing and powerful tool of video-taping for professional self-improvment.  相似文献   

8.
《学习科学杂志》2013,22(4):495-547
This article tells the story of the design of Learning by Design(tm) (LBD), a project-based inquiry approach to science learning with roots in case-based reasoning and problem-based learning, pointing out the theoretical contributions of both, classroom issues that arose upon piloting a first attempt, ways we addressed those challenges, lessons learned about promoting learning taking a project-based inquiry approach, and lessons learned about taking a theory-based approach to designing learning environments. LBD uses what we know about cognition to fashion a learning environment appropriate to deeply learning science concepts and skills and their applicability, in parallel with learning cognitive, social, learning, and communication skills. Our goal, in designing LBD, was to lay the foundation in middle school for students to be successful thinkers, learners, and decisionmakers throughout their lives and especially to help them begin to learn the science they need to know to thrive in the modern world. LBD has students learn science in the context of achieving design-and-build challenges. Included in LBD's framework is a set of ritualized and sequenced activities that help teachers and students acclimate to the culture of a highly collaborative, learner-centered, inquiry-oriented, and design-based classroom. Those ritualized activities help teachers and students learn the practices of scientists, engineers, and group members in ways that they can use outside the classroom. LBD is carefully crafted to promote deep and lasting learning, but we have learned that careful crafting is not enough for success in putting a collaborative inquiry approach into practice. Also essential are fostering a collaborative classroom culture in which students want to be engaged in deep learning and where the teacher sees herself as both a learner and a facilitator of learning, trusts that with her help the students can learn, and enthusiastically assumes the roles she needs to take on.  相似文献   

9.
10.
This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez’s classroom. Marie told stories about her experiences in ten years of professional development focused on inquiry science teaching. I use a social practice theory lens to analyze my own stories as well as Marie’s. I make the case that science teaching is best understood as mediated by socially-constructed identities rather than as the end-product of knowledge and beliefs. The cognitive paradigm for understanding teachers’ professional learning fails to consistently produce transformations of teaching practice. In order to design professional development with science teachers that is generative of new knowledge, and is self-sustaining, we must understand how to build knowledge of how to problematize identities and consciously use social practice theory.  相似文献   

11.
The present study deals with a school‐based professional development trajectory for secondary science teachers, aiming at scaffolding teachers in open‐inquiry teaching for the topic of water quality. Its design was based on the leading principle of ‘guiding by scaffolding’. Seven experienced teachers participated in institutional meetings and teaching at school. The research focused on designing scaffolding tools, addressing these tools in the meetings, and implementing them in the classroom. The main research data were obtained from meetings, classroom discussions, and observations. The results indicated that the professional development trajectory has promoted teachers’ learning of scaffolding students in open inquiry, especially the ability to know when and how to give students a well‐balanced combination of ‘structure’ for open‐inquiry learning and sufficient ‘space’ for that. The implications for science teacher education are discussed.  相似文献   

12.
The development of curriculum materials that are also educative for teachers has been proposed as a strategy to support teachers learning to teach inquiry science. In this study, one seventh-grade teacher used five inquiry science units with varying support for teachers over a two-year period. Teacher journals, interviews, and classroom videotape were collected. Analysis focused on engagement in planning and teaching, pedagogical content knowledge, and the match to teacher learning needs. Findings indicate that this teacher’s ideas developed as she interacted with materials and her students. Information about student ideas, task- and idea-specific support, and model teacher language was most helpful. Supports for understanding goals, assessment, and the teacher’s role, particularly during discussions and group work, were most needed.  相似文献   

13.
This study examines the classroom talk about models and modelling of two secondary science teachers implementing a model-based inquiry instructional unit. The goal was to better understand the opportunities for explicit metamodeling talk in the science classroom. The findings revealed the ways in which they used language to frame the modelling work of the classroom. Instances of modelling talk were identified in classroom videos, and coded using a framework for metamodeling knowledge. Findings revealed that, while instances of metamodeling talk were common, they were largely implicit. This shows that the teachers were aware and knowledgeable about metamodeling ideas (e.g. the nature of models, process of modelling, etc.), but often did not make these ideas explicit to their students. Such findings suggest a trend of focusing on models of phenomena rather than supporting student engagement in the epistemic practice of modelling for reasoning about phenomena. The findings also revealed specific opportunities for explicit metamodeling talk by the teachers including during share-out sessions and the negotiation of explanation criteria. Further implications for classroom practice and research are discussed.  相似文献   

14.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

15.
This study explores elementary teachers’ social understandings and employment of directives and politeness while facilitating inquiry science lessons prior and subsequent to their participation in a summer institute in which they were introduced to the scholarly literature on regulative discourse (directives used by teachers to regulate student behavior). A grounded theory analysis of the institute professional development activities revealed that teachers developed an increased awareness of the authoritative functions served by impolite or direct directives (i.e., pragmatic awareness). Furthermore, a comparative microethnographic analysis of participants’ inquiry-based classroom practices revealed that after the institute teachers demonstrated an increased ability to share authority with students by strategically making directive choices that were more polite, indirect, inclusive, involvement-focused and creative. Such ability led to a reduced emphasis on teacher regulation of student compliance with classroom behavioral norms and an increased focus on the discursive organization of the inquiry-based science learning/teaching process. Despite teachers’ increased pragmatic awareness, teacher–student linguistic relationships did not become entirely symmetrical subsequent to their participation in the summer institute (i.e., teacher authority was not completely relinquished or lost). Based on such findings, it is argued that teachers need to develop higher levels of pragmatic awareness to become effectively prepared to engage in language-mediated teacher–student interaction in the context of inquiry-based science classroom discourse.  相似文献   

16.
For students to meaningfully engage in science practices, substantive changes need to occur to deeply entrenched instructional approaches, particularly those related to classroom discourse. Because teachers are critical in establishing how students are permitted to interact in the classroom, it is imperative to examine their role in fostering learning environments in which students carry out science practices. This study explores how teachers describe, or frame, expectations for classroom discussions pertaining to the science practice of argumentation. Specifically, we use the theoretical lens of a participation framework to examine how teachers emphasize particular actions and goals for their students' argumentation. Multiple-case study methodology was used to explore the relationship between two middle school teachers' framing for argumentation, and their students' engagement in an argumentation discussion. Findings revealed that, through talk moves and physical actions, both teachers emphasized the importance of students driving the argumentation and interacting with peers, resulting in students engaging in various types of dialogic interactions. However, variation in the two teachers' language highlighted different purposes for students to do so. One teacher explained that through these interactions, students could learn from peers, which could result in each individual student revising their original argument. The other teacher articulated that by working with peers and sharing ideas, classroom members would develop a communal understanding. These distinct goals aligned with different patterns in students' argumentation discussion, particularly in relation to students building on each other's ideas, which occurred more frequently in the classroom focused on communal understanding. The findings suggest the need to continue supporting teachers in developing and using rich instructional strategies to help students with dialogic interactions related to argumentation. This work also sheds light on the importance of how teachers frame the goals for student engagement in this science practice.  相似文献   

17.
18.
This article describes the effects of science teacher subject-matter knowledge on classroom discourse at the level of individual utterances. It details one of three parallel analyses conducted in a year-long study of language in the classrooms of four new biology teachers. The conceptual framework of the study predicts that when teaching unfamiliar subject matter, teachers use a variety of discourse strategies to constrain student talk to a narrowly circumscribed topic domain. This article includes the results of an utterance-by-utterance analysis of teacher and student talk in a 30-lesson sample of science instruction. Data are broken down by classroom activity (e.g., lecture, laboratory, group work) for several measures, including mean duration of utterances, domination of the speaking floor by the teacher, frequency of teacher questioning, cognitive level of teacher questions, and student verbal participation. When teaching unfamiliar topics, the four teachers in this study tended to talk more often and for longer periods of time, ask questions frequently, and rely heavily on low cognitive level questions. The rate of student questions to the teacher varied with classroom activity. In common classroom communicative settings, student questions were less common when the teacher was teaching unfamiliar subject matter. The implications of these findings include a suggestion that teacher knowledge may be an important unconsidered variable in research on the cognitive level of questions and teacher wait-time.  相似文献   

19.
20.
The world over, secondary school science is viewed mainly as a practical subject. This may be one reason why effectiveness of teaching approaches in science education has often been judged on the kinds of practical activity with which teachers and students engage. In addition to practical work, language??often written (as in science texts) or oral (as in the form of teacher and student talk)??is unavoidable in effective teaching and learning of science. Generally however, the role of (instructional) language in quality of learning of school science has remained out of focus in science education research. This has been in spite of findings in empirical research on difficulties science students encounter with words of the instructional language used in science. The findings have suggested that use of (instructional) language in science texts and classrooms can be a major influence on the level of students?? understandings and retention of science concepts. This article reports and discusses findings in an investigation of physics teachers?? approaches to use of and their beliefs about classroom instructional language. Direct classroom observations of, interviews with, as well as content analyses of the participant teachers?? verbatim classroom talk, were used as the methods of data collection. Evidence is presented of participant physics teachers?? lack of explicit awareness of the difficulty, nature, and functional value of different categories of words in the instructional language. In conclusion, the implications of this lack of explicit awareness on the general education (initial and in-service) of school physics teachers are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号