首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to assess how the different aspects of nature of science (NOS) were represented in Finnish and Swedish upper secondary school chemistry textbooks. The dimensions of NOS were analyzed from five popular chemistry textbook series. The study provides a quantitative method for analysis of representations of NOS in chemistry textbooks informed by domain-specific research on the philosophy of chemistry and chemical education. The selection of sections analyzed was based on the four themes of scientific literacy: knowledge of science, investigate nature of science, science as a way of thinking, and interaction of science, technology and society. For the second round of analysis the theme of science as a way of thinking was chosen for a closer inspection. The units of analysis in this theme were analyzed using seven domain specific dimensions of NOS: tentative, empirical, model-based, inferential, technological products, instrumentation, and social and societal dimensions. Based on the inter-rater agreement, the procedure and frameworks of analysis presented in this study was a reliable way of assessing the emphasis given to the domain specific aspects of NOS. All textbooks have little emphasis on the theme science as a way of thinking on a whole. In line with the differences of curricula, Swedish textbooks emphasize the tentative dimension of NOS more than Finnish textbooks. To provide teachers with a sufficiently wide variety of examples to discuss the different dimensions of NOS changes to the national core curricula are needed. Although changing the emphasis of the curricula would be the most obvious way to affect the emphasis of the textbooks, other efforts such as pre- and in-service courses for developing teachers understanding of NOS and pedagogic approaches for NOS instruction to their classroom practice might also be needed.  相似文献   

2.
This study assessed the representations of nature of science (NOS) in high school chemistry textbooks and the extent to which these representations have changed during the past four decades. Analyses focused on the empirical, tentative, inferential, creative, theory‐driven, and social NOS, in addition to the myth of “The Scientific Method,” the nature of scientific theories and laws, and the social and cultural embeddedness of science. A total of 14 textbooks, including five “series” spanning one to four decades, were analyzed. The textbooks commanded significant market shares in the United States and were widely used in some of the most populace states. Relevant textbook sections were scored on each of the target NOS aspects on a scale ranging from −3 to +3, which reflected the accuracy, completeness, and manner (explicit versus implicit) in which these aspects were addressed. The textbooks fared poorly in their representations of NOS. Additionally, with a few exceptions, textbook scores either did not change or decreased over the past four decades. These trends are incommensurate with the discourse in national and international science education reform documents, which has witnessed an increasing emphasis on the centrality of NOS to scientific literacy and pre‐college science education during the same time period. Assessment and evaluation strategies, and policies need to be targeted if substantial and desired changes in the ways NOS is addressed in science textbooks are to be effected. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 835–855, 2008  相似文献   

3.
4.
Korean students have shown relatively little interest and confidence in learning science, despite being ranked in the top percentile in international evaluations of academic achievement in science such as the Trends in International Mathematics and Science Study. Although research indicates a positive relationship between student perceptions of science and their science learning, this area has not been sufficiently explored in Korea. Particularly, even though both students' perceptions of scientific practice and their understanding of the nature of science (NOS) are influenced by their science learning experiences at schools, little research examines how this perception, understanding, and experience are related to one another. This study aimed to uncover Korean students' perceptions of school scientific practice through exploring their drawings, writings, and responses to questionnaires. Participants were 500 Korean students in 3rd, 7th, and 10th grades who were asked to complete an open-ended questionnaire. The results indicated that Korean students typically viewed school scientific practices as experimental activities or listening to lecture; and that most participants held an insufficient understanding of the NOS. Overall, no significant relationship emerged between students' perceptions of school scientific practice and their understanding of the NOS. Our findings highlight the need to help both teachers and students understand the potential breadth of school scientific practices, beyond simple ‘activity mania.’ This study also suggests that teachers must balance implicit and explicit instructional approaches to teaching about the NOS through scientific practices in school science contexts.  相似文献   

5.
The nature of science (NOS) is a primary goal in school science. Most teachers are not well-prepared for teaching NOS, but a sophisticated and in-depth understanding of NOS is necessary for effective teaching. Some authors emphasize the need for teaching NOS in context. Species, a central concept in biology, is proposed in this article as a concrete example of a means for achieving increased understanding of NOS. Although species are commonly presented in textbooks as fixed entities with a single definition, the concept of species is a highly discussed one in the science and the philosophy of biology. A multitude of species concepts exist, reflecting both the views and interests of researchers and their utility in different organism groups. The present study serves to address the following questions: How do textbooks in Norwegian primary and lower secondary schools present the concept of species? Can inquiries into the concept of “species” serve to highlight aspects of NOS? A review of the available literature on species and species concepts in school is also performed. In the schoolbooks, the biological species concept is commonly used as the main definition, whereas the morphological species concept is represented by additional remarks of similarity. The potential and pitfalls of using the species concept for teaching NOS are discussed, with NOS being discussed both as a family resemblance concept and as a consensus list. Teacher education is proposed as a starting point for inducing a more sophisticated view of biology into schools.  相似文献   

6.
Li  Xiying  Tan  Zuyu  Shen  Jiliang  Hu  Weiping  Chen  Yinghe  Wang  Jingying 《Research in Science Education》2020,50(3):833-844
Research in Science Education - Based on the analytical framework of nature of science (NOS) in junior school science textbooks, a content analysis method was adopted to analyze the NOS in junior...  相似文献   

7.
Middle school students are learning about climate change in large part through textbooks used in their classes. Therefore, it is crucial to understand how the language employed in these materials frames this topic. To this end, we used systemic functional analysis to study the language of the chapters related to climate change in four sixth grade science textbooks adopted in the state of California. The linguistic variables investigated were: types of nominal groups; processes; circumstances; and the modality system. Our findings showed that these textbooks framed climate change as uncertain in the scientific community – both about whether it is occurring as well as about its human-causation. The implications for science education are discussed in relation to how the current political and public discourses of climate change, rather than the scientific discourse, is influencing how textbooks discuss this topic.  相似文献   

8.
The aim of this paper is to investigate in a systematic and comparative way previous results of independent studies on the treatment of genes and gene function in high school textbooks from six different countries. We analyze how the conceptual variation within the scientific domain of Genetics regarding gene function models and gene concepts is transformed via the didactic transposition into school science textbooks. The results indicate that a common textbook discourse on genes and their function exist in textbooks from the different countries. The structure of science as represented by conceptual variation and the use of multiple models was present in all the textbooks. However, the existence of conceptual variation and multiple models is implicit in these textbooks, i.e., the phenomenon of conceptual variation and multiple models are not addressed explicitly, nor its consequences and, thus, it ends up introducing conceptual incoherence about the gene concept and its function within the textbooks. We conclude that within the found textbook-discourse ontological aspects of the academic disciplines of genetics and molecular biology were retained, but without their epistemological underpinnings; these are lost in the didactic transposition. These results are of interest since students might have problems reconstructing the correct scientific understanding from the transformed school science knowledge as depicted within the high school textbooks. Implications for textbook writing as well as teaching are discussed in the paper.  相似文献   

9.
Since inquiry was first introduced to science education, a lot of inquiry-based tasks have appeared in textbooks for supporting an inquiry-based approach. These tasks have great potential to direct the implementation of an inquiry-based approach, as teachers rely heavily on the use of existing instructional materials in most K-12 classrooms. However, these tasks would not actually take effect unless they could accomplish the mission of assisting in the achievement of the educational goals of an inquiry-based approach, for which it is necessary to assess the design quality of inquiry-based tasks in textbooks. Content analysis is an effective way to evaluate the design quality of textbooks. This study adopted the instrument – the Inquiry-based Tasks Analysis Inventory (ITAI), which fits the purpose and has strong reliability and validity – to analyse the inquiry-based tasks in current high school biology textbooks in Mainland China. The results show that (1) some of the inquiry-based tasks separate the inquiry process from scientific content, (2) current textbooks do not present balanced dispositions to use inquiry process skills, and (3) inquiry-based tasks in current textbooks do not reflect a proper understanding about scientific inquiry. The findings call for revisions of inquiry-based tasks in textbooks and indicate the ambiguous understanding about inquiry that may be held by the textbook authors. What is more, the problems revealed by this study are very similar to those found in previous studies in other regions, which highlights the need for continuous attention to the evaluation of inquiry-based tasks in textbooks.  相似文献   

10.
When we refer to scientific knowledge, we, implicitly or explicitly, refer to its three components, namely its conceptual framework, its methodological principles and its cultural aspects. The pendulum is a topic of science teaching and learning where all three of these aspects can be examined with the aim of gaining a holistic appreciation of the transformation of a natural phenomenon into a phenomenon of the physical sciences and how this can then be recontextualized into a topic of school science learning. The main objective of this study is to examine whether this richness of the pendulum as a topic of teaching is revealed in the school science textbooks in Greece and Cyprus, for both primary and secondary education. We will use an analytical mapping instrument in order to determine, whether the pendulum is introduced at some grade level and, if so, in what context. We will then use an interpretive instrument, which relies on taxonomy of science curricula into traditional, innovative and constructivist programs, in order to attach meaning to the analysis. Finally, we will formulate a series of proposals in relation to the educational value of the simple pendulum at the Greek and Cypriot gymnasium level.  相似文献   

11.
There is, broadly speaking, an agreement within the international science education community that comprehension of the nature of science (NOS) should be a key element in the scientific literacy of citizens. During the last few decades, several didactic approaches have emerged concerning what and how to teach NOS. Also, one of the basic objectives of science education is for students to become familiar with the skills typical of scientific practice; however, there is little reference to their need to also acquire meta-knowledge about scientific practice (i.e., an understanding of the nature of scientific practice). Among other reasons, this may be due to NOS being essentially identified in most of the predominant proposals with the nature of scientific knowledge. But why not plan the teaching of science to be in tune with real scientific practice for students to learn about the nature of scientific practice at the same time as they are learning science? The answer to this question has given rise to a proposal grounded in ten essential pedagogical principles for the teaching and learning of science in secondary school. These are the principle of formulating questions, the principle of creativity and imagination, the principle of experimentation, the principle of procedural diversity, the principle of errors as opportunity, the principle of modeling, the principle of cooperation and teamwork, the principle of argumentation and discussion, the principle of communication, and the principle of evaluation. The purpose of this article is to present the justification and fundaments of these principles.  相似文献   

12.
This article aims to analyze how science is discursively attached to certain parts of the world and certain “kinds of people,” i.e., how scientific knowledge is culturally connected to the West and to whiteness. In focus is how the power technology of coloniality organizes scientific content in textbooks as well as how science students are met in the classroom. The empirical data consist of Swedish science textbooks. The analysis is guided by three questions: (1) if and how the colonial history of science is described in Swedish textbooks; (2) how history of science is described; (3) how the global South is represented. The analysis focuses on both what is said and what is unsaid, recurrent narratives, and cultural silences. To discuss how coloniality is organizing the idea of science eduation in terms of the science learner, previous studies are considered. The concepts of power/knowledge, epistemic violence, and coloniality are used to analyze how notions of scientific rationality and modernity are deeply entangled with a colonial way of seeing the world. The analysis shows that the colonial legacy of science and technology is not present in the textbooks. More evident is the talk about science as development. I claim that discourses on scientific development block out stories problematizing the violence done in the name of science. Furthermore, drawing on earlier classroom studies, I examine how the power of coloniality organize how students of color are met and taught, e.g., they are seen as in need of moral fostering rather than as scientific literate persons.  相似文献   

13.
Four themes of scientific literacy have been synthesized to analyze science textbooks for this purpose: (a) science as a body of knowledge, (b) science as a way of investigating, (c) science as a way of thinking, and (d) the interaction among science, technology, and society (STS). The intercoder agreement between two researchers who coded the units of analysis for the four themes was high. The life science textbooks examined in this study seem to stress two aspects of scientific literacy—science as a body of knowledge and science as a way of investigating. These textbooks devote practically no text to science as a way of thinking. Very little text is devoted to the interaction of science, technology, and society. There was at least one chapter in each textbook that addressed the nature of science and its relationship to life science. Most of the analyzed textbooks present the stereotypical steps of the scientific method and do not provide a balance of scientific literacy themes.  相似文献   

14.
Science educators have the common goal of helping students develop scientific literacy, including understanding of the nature of science (NOS). University faculties are challenged with the need to develop informed NOS views in several major student subpopulations, including science majors and nonscience majors. Research into NOS views of undergraduates, particularly science majors, has been limited. In this study, NOS views of undergraduates in introductory environmental science and upper-level animal behavior courses were measured using Likert items and open-ended prompts. Analysis revealed similarities in students'' views between the two courses; both populations held a mix of naïve, transitional, and moderately informed views. Comparison of pre- and postcourse mean scores revealed significant changes in NOS views only in select aspects of NOS. Student scores on sections addressing six aspects of NOS were significantly different in most cases, showing notably uninformed views of the distinctions between scientific theories and laws. Evidence-based insight into student NOS views can aid in reforming undergraduate science courses and will add to faculty and researcher understanding of the impressions of science held by undergraduates, helping educators improve scientific literacy in future scientists and diverse college graduates.  相似文献   

15.
A pedagogical analysis of science textbooks: How can we proceed?   总被引:1,自引:0,他引:1  
This paper discusses some of the available frameworks for the pedagogical analysis of school science textbooks. First, it distinguishes between (a) studies which focus on elements of textbooks, such as the content, vocabulary, illustrations used, and the teaching methods promoted; and (b) those which consider the principles that organize the content and the form of presentation. In attempting to consider the sorts of principles that may be used in the studies categorised under (b), two crucial issues are discussed. The first issue refers to the relationship between scientific knowledge and school knowledge, which, as the relevant literature suggests, might not be conceived merely as a simplified “casting” of the scientific structure, but rather should be understood as a complex social process. The second issue explicitly addresses the nature of the pedagogic relationship and the place of the pedagogic text within it. Recent views about the nature of knowledge, it is argued, would suggest a reconceptualisation of the teaching activity, and indicate a model according to which the three elements of the teaching situation-the content, the pupil and the teacher—are seen as being (re)constituted in their articulation within and through the text(book). Thus, for example, what is to be a competent pupil in this approach is a function of the text. On the basis of these considerations, three approaches to the analysis of science textbooks are discussed: the socio-cognitive, the sociolinguistic and the socio-epistemic. The relative merits of the third approach are considered, and some examples are used from Greek science textbooks.  相似文献   

16.
Developing pre-service science teachers’ epistemic insight remains a challenge, despite decades of research in related bodies of work such as the nature of science (NOS) in science education. While there may be numerous aspects to this problem, one critical element is that the NOS is a meta-concept that demands higher-order cognitive skills. One possible strategy to facilitate pre-service teachers’ understanding of epistemic aspects of science is visualisation. Visual representations of objects and processes can be tools for developing and monitoring understanding. Although the NOS and visualisation literatures have been studied extensively, the intersection of these bodies of literatures has been minimal. Incorporating visual tools on the NOS in teacher education is likely to facilitate teachers’ learning, eventually impacting their students’ learning of the NOS. The objective of this paper is to illustrate how the visual tools of scientific knowledge and practices aspects of the NOS can be integrated in science teacher education in order to develop pre-service teachers’ epistemic insight. The paper presents an empirical study that incorporated visual tools about the NOS in primary science teacher education. Data on 14 pre-service teachers’ are presented along with in-depth case studies of 3 pre-service teachers illustrating the influence of the teacher education intervention. The qualitative analysis of visual representations before and after the intervention as well as verbal data suggests that there was improvement in pre-service teachers’ perceptions of the NOS. Implications for future research on visualisation of the NOS are discussed.  相似文献   

17.
The phenomenon of industrial melanism (IM) became widely acknowledged as a well-documented example of natural selection largely as a result of H.B.D. Kettlewell’s pioneering research on the subject in the early 1950s. It was quickly picked up by American biology textbooks starting in the early 1960s and became ubiquitous throughout the 1970s, 1980s and 1990s. While recent research on the phenomenon broadly supports Kettlewell’s explanation of IM in the peppered moth, which in turn has strengthened this example of natural selection, textbook IM entries have actually declined in recent years in favor of other examples. In a previous paper, we drew attention to the pivotal role visual aspects played in the introduction of IM into (and its subsequent removal from) textbook accounts. The present article continues this investigation by analyzing textual passages on industrial melanism within a stratified random sample of textbooks from the 1960s to the 2000s. The fact that this example of natural selection was included by multiple publishers independently, in a short period of time, makes it uniquely qualified for a textbook study of this kind. The purpose of the present project was to determine whether these textbooks contain what has come to be known as the standard peppered moth story. Three complete series were also inspected for change across time. Our analysis focused on (1) the amount of text devoted to industrial melanism; (2) what specific science content elements were present; and (3) what, if any, nature of science (NOS) aspects were included. The study documents an increase in the amount of text devoted to industrial melanism over the decades. In spite of this increase, only modest changes in science content and NOS aspects were found.  相似文献   

18.
This study aims at presenting a grid for analysing the way the language employed in Greek school science textbooks tends to project pedagogic messages. These messages are analysed for the different school science subjects (i.e., Physics, Chemistry, Biology) and educational levels (i.e., primary and lower secondary level). The analysis is made using the dimensions of content specialisation (classification) and social-pedagogic relationships (framing) promoted by the language of the school science textbooks as well as the elaboration and abstraction of the corresponding linguistic code (formality), thus combining pedagogical and socio-linguistic perspectives. Classification and formality are used to identify the ways science textbooks tend to position students in relation to the interior of the corresponding specialised body of knowledge (i.e., in terms of content and code) while framing is used to identify the ways science textbooks tend to position students as learning subjects within the school science discourse. The results show that the kind of pedagogic messages projected by the textbooks depends mainly on the educational level and not particularly on the specific discipline. As the educational level rises a gradual move towards more specialised forms of scientific knowledge (mainly in terms of code) with a parallel increase in the students' autonomy in accessing the textbook material is noticed. The implications concern the way both students and teachers approach science textbooks as well as the roles they can undertake by internalising the textbooks' pedagogic messages and also the way science textbooks are authored.  相似文献   

19.
The purpose of this study was to examine the content of seven high school chemistry textbooks for curriculum balance and emphasis on the following aspects of scientific literacy: (a) science as a body of knowledge, (b) science as a way of investigating, (c) science as a way of thinking, and (d) the interaction among science, technology, and society. In addition, the number of textbook pages, vocabulary terms, pictures, questions, and problems at the end of the chapter were determined. The textbook is an important teaching aid in high school chemistry courses, which conveys some of the information that students receive and influences how students perceive this subject. The majority of chemistry textbooks we analyzed stress science as a body of knowledge, place some emphasis on science as a way of investigating, have practically eliminated science as a way of thinking, and devote very little text to the interaction among science, technology, and society. Furthermore, these are voluminous books that range in length from 466 to 729 pages, with as many as 60 questions per chapter.  相似文献   

20.
Polysemy in graph-related practices is the phenomenon that a single graph can sustain different meanings assigned to it. Considerable research has been done on polysemy in graph-related practices in school science in which graphs are rather used as scientific tools. However, graphs in science textbooks are also used rather pedagogically to illustrate domain-specific textbook content and less empirical work has been done in this respect. The aim of this study is therefore to better understand polysemy in the domain-specific pedagogical use of graphs in science textbooks. From socio-cultural and cultural-historical perspectives, we perceive polysemy as irreducible to either the meaning-making (semiotic) resources provided by the graph or its readers who assign meaning to it. Departing from this framework, we simultaneously investigated: (a) the meanings 44 pre-university biology students assigned to the Cartesian plane of a graph that is commonly used as a pedagogical tool in Dutch high school biology textbooks (an electrocardiogram); (b) the semiotic resources provided by this graph; and (c) the educational practices of which it is supposedly a part according to the actions constituted by the textbooks that were to be conducted by students. Drawing on this case, we show polysemy in the pedagogical use of graphs in science textbooks. In turn, we show how this polysemy can be explained dialectically as the result of both the meaning-making resources provided by the textbooks and the graph-related practices in which students supposedly engaged by using their textbooks. The educational implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号