共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
鲍元丞 《数学大世界(高中辅导)》2005,(6):5-5
余弦定理:a2=b2 c2-2bcosAb2=a2 c2-2acosBc2=a2 b2-2abcosC正弦定理:asinA=sinbB=sincC=2R把正弦定理变形为:a=2RsinA,b=2RsinB,c=2RsinC回代余弦定理并整理可得形似余弦定理的一组公式:sin2A=sin2B sin2C-2sinBsinCcosAsin2B=sin2A sin2C-2sinAsinCcosBsin2C=sin2A sin2B-2sinAsinBcosC(A B C=180°)※应用公式※不仅可以简捷地解答某些相关问题,而且也为此类问题的解决提供了新的思想方法.【例1】求sin210° cos240° sin10°cos40°的值.分析:所求式与公式※形式不尽相同不能直接应用公式.但需:①化为同名函数;②调整系数… 相似文献
11.
正弦、余弦定理是揭示三角形边角之间数量关系的重要定理。应用它们解答几何题,优势在于思想自然,不必添太多的辅助线,再辅以必要的三角恒等变形,就可简捷地解题。本文从几个方面谈谈正弦、余弦定理的广泛应用。1 证明几何等式例1 设∠A是△ABC中最小的内角,点 相似文献
12.
13.
在国内外数学竞赛中,与三角形垂心有关的试题时常出现。本文对三角形垂心余弦定理作些探讨,并举实例说明其应用。 定理 设△ABC的外接圆半径为R,垂心为H,则AH=2R|cosA|,BH=2R 相似文献
14.
15.
16.
立几中曾有这样一道题:在四面体o—ABC中,若OA、OB、OC两两垂直,则有:S△ABC~2=S△OAB~2+S△OBC~2…(Ⅰ)它可看作勾股定理从二维空间到三维空间的推广,称它为“直四面体的勾股定理”:在直四面体中,各个侧面积平方和等于其底面积的平方。 相似文献
17.
新编教材严格按照《新大纲》进行精简、更新。高中“三角函数” ,“两角和与差的三角函数” ,“反三角函数和简单三角方程”合并为“三角函数”一章 ,课时压缩为 36节。减少了许多公式的记忆 ,繁琐的变形 ,偏难的怪题。而“平面向量”一章中保留了正弦定理 ,余弦定理和解斜三角形应用举例。原有一些常规题如求sin2 1 0° cos2 4 0° sin1 0°cos4 0°的值 ,求证sin2 β sin2 (α β) -2cosαsinβsin(α β) =sin2 α就较难解决。现根据新教材内容 ,运用正弦定理 ,余弦定理以及诱导公式 ,可以得到正余弦… 相似文献
18.
19.
张月琴 《数学学习与研究(教研版)》2013,(13):121
近几年的高考中,几乎年年都会涉及解三角形的问题,而解三角形问题归根结底就是正弦定理和余弦定理的应用问题.所以我们在灵活掌握两个定理及其推论的基础上,还得学会灵活应用,使定理最大限度地发挥其作用. 相似文献
20.
正、余弦定理及其应用是高中数学的一个重要内容,是高考必考知识点之一,也是解三角形的重要工具,常常会结合三角函数或平面向量的知识来考查其运用. 相似文献