首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在《由基本不等式“a~2+b~2≥2ab”想到的》(见本刊1989年第4期)一文中给出了以下猜想(即原文的命题19): 命题1 设a,b,c为正数,则 (1) a~5+b~+c~5≥a~8bc+ab~8c+abc~8; (2) a~n+b~n+c~n≥a~pb~qc~r+a~qb~rc~p+a~rb~pc~q。其中n∈N,p,q,r为非负整数,且p+q+r=n。我们首先证明这一猜想是成立的。证明 (1)用两种方法证。证法1 由(a~3-b~3)(a~2-b~2)≥0得 a~5+b~5≥a~3b~2+a~2b~3同理 b~5+c~5≥b~3c~2+b~2c~3, c~5+a~5≥c~3a~2+c~2a~3。以上三个不等式相加,并注意到b~2+c~2≥2bc,c~2+a~2≥2ca,a~2+b~2≥2ab,有 2(a~5+b~5+c~5)≥a~3(b~2+c~2)+b~3(c~2+a~2)+c~3(a~2+b~2)≥2a~3bc+2b~3ca+2c~3ab,  相似文献   

2.
原命题已知a、b、c∈R~+,且两两不等,求证: 2(a~3+b~3+c~3) >a~2(b+c)+b~2(c+a)+c~2(a+b). 这是高中《代数》(甲种本)第二册复习参考题三(A组)第5题,本文对该题作进一步的探讨。一、原命题的改进和拓广首先指出原命题可改进为命题一已知a、b、c∈R~+,且不全相等,则 2(a~3+b~3+c~3) >a~2(b+c)+b~2(c+a)+c~2(a+b). 其证明参见下面命题二的证明。二、分析探索,拓广命题原命题给出的不等式两边都是齐次式,我们可以从项数和指数两个方面进行推广。命题二已知a、b、c、d∈R~+,则 3(a~3+b~3+c~3+d~3)  相似文献   

3.
2013年浙江省以及2012年甘肃省数学竞赛的不等式证明虽然不难,但因其证明过程中涉及的代数式变形以及方法的灵活性和多样性,对同学们的学习有极大的帮助,故提供几种解法,以飨读者.题目1(2013年浙江省高中数学竞赛试题)设a,b,c∈R~+,ab+bc+ca≥3,证明:a~5+b~5+c~5+a~3(b~2+c~2)+b~3(c~2+a~2)+c~3(a~2+b~2)≥9.  相似文献   

4.
宋庆老师在文[1]末提出4个猜想.其中猜想4为:已知a,b,c是正数,求证a~2/(a~2+(b+c)~2)+b~2/b~2+(c+a)~2+c~2/c~2+(a+b)~2≥3/5(1);(a~3)/(a~3+(b+c)~3)+(b~3)/(b~3+(c+a)~3)+(c~3)/(c~3+(a+b)~3)≥1/3(2);(a~4)/(a~4+(b+c)~4)+(b~4)/(b~4+(c+a)~4)+(c~4)/(c~4+(a+b)~4)≥3/(17)(3).  相似文献   

5.
某种课本上有这样一道例题:“已知a,b,c是不全相等的正数,求证a(b~2+c~2)+b(c~2+a~2)+c(a~2+b~2>6abc.”其证明过程是:“∵b~2+c~2≥2bC,a>0,∴a(b~2+C~2)≥2abc (1)同理,b(c~2+a~2)≥2abc (2)c(a~2+b~2)≥2abc(3)因为a、b、c不全相等,所  相似文献   

6.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

7.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

8.
代数部分1.本届IMO第1题.2.已知实数a、b、c、d满足a+b+c+d=6.a~2+b~2+c~2+d~2=12.证明:36≤4(a~3+b~3+c~3+d~3)-(a~4+b~4+c~4+d~4)≤48.3.已知x_1,x_2,…,x_(100)是非负实数,且对于  相似文献   

9.
一、余弦定理的向量证明在任意△ABC中,a、b、c为∠A、∠B、∠C的对边,则a~2=b~2+c~2-2bccosA,b~2=a~2+c~2-2accosB,c~2=a~2+b~2-2abcosC(2011年陕西省理科(文科)第18题"叙述并证明余弦定理").(直接来原于课  相似文献   

10.
和面积在平面几何中的地位相当,体积在立体几何中也有一番妙用。举例说明如下。一利用体积求点到平面的距离例1 长方体ABCD-A_1B_1C_1D_1中,AB=a,BC=b,BB_1=c,求顶点B_1到截面A_1BC_1的距离。解由题设,长方体AC_1中,AB=a,BC=b,BB_1=c, ∴A_1B=(a~2+c~2)~(1/2),BC_1=(b~2+c~2)~(1/2),A_1C_1=(a~2+b~2)~(1/2) 故cos∠BA_1C_1=((A_1B)~2+(A_1C_1)~2-(BC_1)~2)/(2A_1B·A_1C_1)=(a~2+c~2+a~2+b~2-b~2-c~2)/(2((a~2+c~2)~(1/2))·(a~2+b~2)~(1/2))=(a~2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))sin∠BA_1C_1=(1-(a~4)/(a~2+c~2)(a~2+b~2))~(1/2)=(a~2b~2+b~2c~2+c~2a~2)~(1/2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))  相似文献   

11.
第十三届(1953牛)普特南数学竞赛有这样一道试题: 设实数a,b,c中任意两个之和大于第三个,求证 2/3(a+b+c)(a~2+b~2+c~2) >a~3+b~3+c~3+abc. (1) 事实上,我们有命题设实数a,b,c中任意两个之和大于第二个,则 2/3(a+b+c)(a~2+b~2+c~2) ≥a~3+b~3+c~3+3abc. (2)当且仅当a=b=c时等号成立. 证明:不难验证,(2)式等价于 (b+c-a)(c+a-b)(a+b-c)  相似文献   

12.
丁兴春 《中学教研》2007,(10):26-27
下面题目出现在各类数学辅导资料上:题1 设 a>b>c>0,求证:a~2b b~2c c~2a>ab~2 bc~2 ca~2.最近笔者在解数学奥林匹克竞赛题时,遇到了与题目1相似的一道不等式题:题2 设 a>b>c>0,求证:a~3b~2 b~3c~2 c~3a~2>a~2b~3 b~2c~3 c~2a~3.比较上面2道不等式题,猜想是否具有一般性的结论呢?即:当 a≥b≥c>0,s,t ∈N*且 s≥t时,是否有:a~sb~t b~sc~t c~sa~t≥a~tb~s b~tc~s c~ta~s 成立呢?  相似文献   

13.
一、问题的提出椭圆课上的一道练习题:已知长轴是短轴的2倍,一个焦点坐标是(3,0),求该椭圆的方程.1.问题的出现该题是在理解了椭圆的概念后出的一道概念性的练习题.学生解答起来应该没有问题,但是恰恰出乎我的预料,我让一个学生上黑板练习,他是这样解答的:解:因为2a=2×2b,c=3,所以a=2b,a~2=b~2+c~2.即(2b)~2=b~2+9,b~2=3,a~2=2b~2=6.到了这一步之后就停在那不动了,他应该在想为什么得到的是a~2=b相似文献   

14.
设a,b,c,Δ与a′,b′,c′,Δ′分别代表△ABC与△A′B′C′的三边与面积,则著名的Pedoe不等式是: a′~2(-a~2+b~2+c~2)+b′~2(a~2-b~2+c~2)+c′~2(a~2+b~2-c~2)≥16ΔΔ′,式中等号当且仅当△ABC∽△A′B′C′时成立。文[1]证明了: 设△.表示a~(1/2),b~(1/2),c~(1/2)组成的三角形的面积,则有  相似文献   

15.
《数学通报》2005年8月号数学问题的1570给出如下不等式链:设 a,b,c∈R~ ,求证:a~5/b~3 b~5/c~3 c~5/a~3≥a~/b~2 b~4/c~2 c~4/a~2≥a~3/b b~3/c c~3/a≥a~2 b~2 c~2.(1)(注:这里我们略去了原问题中的最后一个常见的不等式.)本文通过对这个问题不同证法的探究,得到一个和式不等式,并利用这个和式不等式对问题1570进行再证和拓广.  相似文献   

16.
正2013年全国初中数学联合竞赛试题第二试(A)的第1题和第二试(B)的第3题,用高中数学知识来解决优势明显.下面给出这两道题的解(证)法,供大家欣赏.试题呈现1(2013年全国初中数学联合竞赛第一试(A)第1题)已知实数a,b,c,d满足2a~2+3c~2=2b~2+3d~2=((ad-bc))~2=6,求(a~2+b~2)(c~2+d~2)的值.此题背景是高中数学常见的椭圆问题或三角函数问题或向量问题或柯西不等式,既有趣味性又不失思维的深刻性.  相似文献   

17.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

18.
定理1 欲证 P≥Q,只需证 P Q≥2Q.例1 (《数学通报》数学问题解答1602)已知 a,b,c∈R_ ,求证:((a b)/(a c))a~2 ((b c)/(b a))b~2 ((c a)/(c b))c~2≥a~2 b~2 c~2 .证明:不等式可化为P=a~3b~2 b~3c~2 c~3a~2≥a~2b~2c ab~2c~2 a~2bc~2≥Q.P Q=(a~3b~2 ab~2c~2) (b~3c~2 a~2bc~2) (c~3a~2  相似文献   

19.
性质1 如果a,b,c三个数成等比数列,则a~2b~2c~2(1/a~3 1/b~3 1/c~3)=a~3 b~3 c~3证明: ∵a,b,c成等比数列 ∴b/a=c/b 左端=a~2b~2c~2(1/a~3 1/b~3 1/c~3) =b~2c~21/a a~2c~21/b a~2b~21/c =a~3 b~3 c~3=右端性质2 如果a,b,c,d四个数成等比数列,则  相似文献   

20.
高中课本《代数》下册(必修)P_(32)复习参考题五第5题“已知 abc∈R~ ,且两两不等,求证2(a~3 b~3 c~3)>a~2(b c) b~2(a c) c~2(a b).”本文将此不等式作完善引伸,进而由此推证出一些著名不等式及竞赛不等式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号