首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、气密性检验方法1.升温法。升高气体发生装置体系的温度可以临时增大其压强,从而使体系内部分气体外逸,当温度恢复到初始温度时,体系压强减小,导致浸没在水中的导气管内倒吸有一段水柱。  相似文献   

2.
1 原理 通过气体发生器与附设的液体构成封闭体系,依据改变体系的内空气压强时出现的现象(如气泡的产生、水柱的形成、液体的下沆、液面的升降等)来判断装置气密性的好坏.①被检查的装置营造成一个封闭的系统,其内有一部分气体.如:将导管插入水中、关闭分液漏斗活塞等.②通过一定方式(改变温度、体积)使装置内气体压强发生变化.如:手捂试管、向装置内加水等.③气体压强的改变能通过一定的现象(气泡、水柱等)呈现出来.  相似文献   

3.
一、原理分析我们知道 ,封闭气体的压强是由大量气体分子频繁地碰撞器壁而产生的 ,并且决定于单位体积内的气体分子数和分子的平均速度 .单位体积内的气体分子数与气体密度有直接联系 ,分子的平均速率又与温度有关 (温度是分子平均动能的标志 ) .故封闭气体压强可认为决定于气体的密度和温度 .我们也可以从克拉珀龙方程 p V=mMRT,得到p=mVTRM=RMρT.式中 R为普适常量 ,M为摩尔质量 ,m为气体的质量 ,所以 RM为常量 .设 k=RM,则气体压强为 p=kρT.由此得到的结论是 :封闭气体的压强决定于气体的密度和温度 .用公式表示为p=kρT,或 p∝…  相似文献   

4.
温度、体积和压强是气体的三个状态参量.要确定气体的状态,就要知道气体的温度、体积和压强.其中气体压强的计算是一个难点,也往往是解决问题的关键.特别是高考不  相似文献   

5.
1 原理 通过气体发生器与附设的液体构成封闭体系,依据改变体系内空气压强时出现的现象(如气泡的产生、水柱的形成、液体的下滴、液面的升降等)来判断装置气密性的好坏。①被检查的装置营造成一个封闭的系统,其内有一部分气体。如:将导管插入水中、关闭分液漏斗活塞等。②通过一定方式(改变温度、体积)使装置内气体压强发生变化。如:手捂试管、向装置内加水等。③气体压强的改变能通过一定的现象(气泡、水柱等)呈现出来。  相似文献   

6.
密闭在容器内一定质量的气体,温度不变时,体积越大,压强越小;体积越小,压强越大.利用二力平衡条件,可以判定被水银柱密闭的气体的压强大小.一、试管内密闭气体的压强如果大气压强p0=76cm高水银柱,试管内水银柱的长度为h=5cm,根据试管的放置方向可以判定不同情况下密闭气体的压强大小.1.试管竖直放置:当试管开口向上时(图1),密闭气体的压强大小为p=p0+h=81cm高水银柱.当试管开口向下时(图2),密闭气体的压强大小为p=p0-h=71cm高水银柱.2.试管水平放置:试管水平放置时,密闭气体的压强与管外大气…  相似文献   

7.
一、考查对气体压强微观解释的理解气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力.影响气体压强的两个因素:(1)气体分子的平均动能.从宏观上看是气体的温度.(2)单位体积内的分子数(即分子的密集程度),从宏观上看是气体的体积。  相似文献   

8.
一、气体压强的计算方法温度、体积和压强是气体的三个状态参量.要确定气体的状态,就要知道气体的温度、体积和压强.其中气体压强的计算是一个难点,也往往是解决问题的关键.下面介绍气体压强的三种计算方法.(图象法已有专讲进行分析,因此本讲不作专题研究)(一)...  相似文献   

9.
压强、温度和内能在气体分手运动论一章中,是描述理想气体性质的三个最基本的概念,也是这一章的重点内容。一、压强1.压强的微观实质从定性意义上讲,压强是大量分子对器壁不断碰撞的结果;从定量意义上讲,压强是气体分子在单位时间内施于器壁单位面积上的平均冲量 P=(dl)/(dt ds),也可表述成 P=(单位时间内与单位面积碰撞的分子数)×(每个分子一次碰撞施于器壁的冲量)。  相似文献   

10.
学习了气体压强与温度的关系后,我制作了一个"气体压强与温度关系演示仪",用它可以演示所体压强与温度的关系,下面介绍它的制作和使用方法: 一、所需器材:圆底烧瓶一只、U形玻璃管一个、带孔的橡皮塞一个、橡胶管一段、直玻璃管一段.  相似文献   

11.
气体压强是大量气体分子作用在器壁单位面积上的平均作用力.从微观角度看,气体的压强与气体分子的平均动能(温度)及气体分子的密集程度(分子密度)有关.温度越高,分子撞击器壁的平均速度就越大,气体分子越密集,单位时间作用在器壁单位面积上的分子数就越多,气体的压强就越大.  相似文献   

12.
科技小制作     
吹气球 1.制作原理: 气体压强跟体积的关系:在温度不变时,一定质量的气体,体积越小,压强越大;体积越大,压强越小。 2.制作材料: 塑料瓶(矿泉水瓶等)、气球。  相似文献   

13.
喷泉实验在高中化学中是一个很重要的实验,也是一个富有探究意义的实验。喷泉实验的基本原理是:使烧瓶内外在短时间内产生较大的压强差,利用大气压将烧瓶下面烧杯中的液体压人烧瓶内,在尖嘴导管口形成喷泉。哪些因素能够造成烧瓶内外气体有压强差呢?由理想气体状态方程:PV=nRT,可知影响气体压强的因素有温度、气体的物质的量、气体的体积。产生压强差的措施有以下几种。(1)使温度改变。  相似文献   

14.
一、高压锅使用过程中为什么要排出锅内的冷空气? 高压锅的原理是:压强增大,液体的沸点升高.但通过实验证明,高压锅内留有不同气压空气时,虽然液体表面气压相同,但温度并不相同. 表一留有不同的气压空气时,温度与压强的关系从下表可知当锅内气压相同时,锅内留有的空气气压越低,温度就越高,所以使用高压锅时要等到锅内气体沸腾,水汽化排出锅内的冷空气后盖上限压阀,以达到理想的温  相似文献   

15.
查理定律是描述一定质量的气体在体积不变情况下 ,压强随温度变化的规律 ,表述为 :一定质量的某种气体 ,在体积不变的情况下 ,温度每升高 (或降低 ) 1℃ ,增加 (或减小 )的压强等于它在 0℃时压强的 1 / 2 73.其物理意义非常清楚 ,但要使学生真正领会和掌握却是在剖析和讨论中完成的 .一、公式的原型用 p0 表示 0℃时一定质量的气体的压强 ,当温度变化 Δt(℃ )时 ,气体 (体积不变 )的压强的变化量为Δp,查理定律的表达式为Δp=Δt2 73p0 . 1从上式中不能直接知道某状态的压强 ,只能直接知道从一个状态变化到另一个状态时压强的变化随温度的…  相似文献   

16.
气体在体积不变的情况下所发生的状态变化叫做等容变化 .查理定律就是描述一定质量的气体在做等容变化时压强随温度变化的规律 .一、查理定律的两种表述形式关于查理定律 ,教材中有两种表述 .1 .查理定律的第一种表述形式及其物理意义一定质量的气体 ,在体积不变的情况下 ,温度每升高 (或降低 ) 1℃ ,增加 (或减少 )的压强等于它在 0℃时压强的 1 /2 73.这个表述其物理意义非常清楚 ,指明了做等容变化的气体的压强和温度之间的一种线性关系 ,由此可导出一定质量的气体 ,在任何温度 t时气体的压强的数学表达式 ,即pt=p0 ( 1 t2 73) .其中 p0 为 0℃时该气体的压强 .2 .查理定律的第二种表述形式及其意义引入热力学温标 T=t 2 73.1 5K后 ,查理定律的数学表达式为p1/T1=p2 /T2 .查理定律又可表述为 :一定质量的理想气体 ,在体积不变的情况下 ,它的压强跟热力学温度成正比 .查理定律的第二种表述 ,只是用数学语言描述了气体压强与绝对温度成正比这样一种关系 ,教材没有进一步揭示定律所蕴含的更普遍的物理内涵 .那么 ,它更普遍的物理内涵是什么呢 ?我们不妨作如下分析...  相似文献   

17.
在化学实验中,气体压强是常用的一个物理量。从物理学中知道一定量的气体的压强与温度成正比,与气体的体积成反比。因此,一定量的气体的温度、压强、体积三个量的变化是相互关联的。一、气体压强与温度的关系大部分物质都具有热胀冷缩的现象,其中气态物质的变化尤为明显。利用气体的这种现象,化学上常用来检查实验装置的气密性、反应的热效应等等。例1 如图所示,向小试管中分别加入一定量的下列物质后,右侧U形管的液面没有发生明显变化的是( )。A.浓H2SO4 B.NaOH固体C.CaO固体D.蔗糖(C6H12O6)固体  相似文献   

18.
自从2002年《高中物理教学大纲》调整,把热学部分的“气体实验定律”和“理想气体状态方程”删掉后,气体压强的微观解释就成了该部分的重点内容.从宏观来讲,气体的压强由气体的体积和温度共同决定,这点比较好理解;从微观来讲,在气体压强一定的情况下,气体分子在单位时间内与器壁单位面积碰撞的分子数究竟与气体的体积和温度有什么关系就成了教学的重点和难点.  相似文献   

19.
陈育德 《高中生》2008,(20):33-34
一、正确理解阿伏加德罗常数(N_A)的概念1.气体摩尔体积气体的体积受温度、压强的影响很大,因此,说到气体的体积时,必须指明外界条件。当温度和压强一定时,1 mol任何气体的体积都约为一个定值,气体摩尔体积同样也适用于混合气体。  相似文献   

20.
基于气体分子动理论和理想气体的微观模型给出理想气体的压强和温度的计算公式.由这两个公式从微观层面解释理想气体的压强和温度的本质,进而可以帮助解释和分析一些宏观物理现象.从微观角度而言,压强是大量气体分子持续不断地撞击容器器壁而形成的单位面积上的压力;温度则是大量气体分子热运动剧烈程度的宏观量度,也可用来描述气体分子的平均平动能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号