首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道,在直角坐标平面内,点P(x0,y0)在圆锥曲线上的充要条件是点尸的坐标满足圆锥曲线的方程.当点尸不在曲线上时,会有什么结论呢? 一条圆锥曲线把平面分成几个区域,如果我们把焦点所在的区域叫做圆锥曲线的内部,那么有以下结论:  相似文献   

2.
<正> 本文探讨在圆锥曲线上求一点,使其到一定点和一焦点(或圆心)的距离之和最小、或距离之差(绝对值)最大的问题. 圆锥曲线将平面分成两部分,我们称含焦点的区域为圆锥曲线的内部,不含焦点的区域为圆锥曲线的外部.以下讨论定点在曲线内  相似文献   

3.
[定义] 圆锥曲线把平面分成n个部分,我们把包含焦点的那部分称为圆锥曲线的内部,不包含焦点的那部分称为圆锥曲线的外部。 [性质一] 椭圆内部任一点到它的两个焦点的距离之和小于椭圆的长轴长:外部任意一点到它的两个焦点的距离之和大于椭圆的长轴长。 [性质二] 双曲线内部任一点到它的两个焦点的  相似文献   

4.
定义1:如果直线L与圆锥曲线C相交于两个重合的点,则称L为圆锥曲线C的切线。 定义2:如果点M与圆锥曲线C的一个焦点F在圆锥曲线的同一部分,则称点M在圆锥 曲线C的内域。如果点M与圆锥曲线 C的焦点 F不在圆锥曲线 C的同一部分则称点 M在圆锥曲线C的外域。 设非退化圆锥曲线C的方程为F(x.y)=a_(11)x~2 2a_(12)xy a_(22)y~2 2a_(13)x 2a_(23)y a_(33)=0(1),为了研究圆锥曲线 C的切线的存在性光给出三个预备定理。本文略去其证明过程。 定理1:点M(X_0,y_0)为曲线c的内点的必要条件是F(x_0,y_0)·I_3>0;点 M(X_0,y_0)为曲线 C的外点的必要条件是 F(X_0,y_0)I_3<0。其中:  相似文献   

5.
一、关于曲线的极坐方程的定义我们知道,在平面内建立坐标系的目的是为了建立平面内的点与实数对的对应,进而建立曲线与方程的对应,再通过研究方程的代数性质来掌握曲线的几何性质。在直角坐标系中,平面内的点与它的直角坐标的对应是一一对应。在此基础上,给出了曲线的直角坐标方程的定义:设有曲线C和方程f(x,y)=0,若(1)曲线C上任一点的直角坐标都能满足方程f(x,y)=0;(2)以方程f(x,y)=0的任一组解为坐标的点都在曲线C上,则方程f(x,y)=0叫  相似文献   

6.
我们知道,对于二次曲线f(x,y)=0(圆、椭圆)和平面内一点P0(x0,y0),有如下充要条件。(1)若P0(x0,y0)在曲线f(x,y)=0的内部f(x0,y0)<0.(2)若P0(x0,y0)在曲线f(x,y)=0的内部过P0(x0,y0)的直线L恒与曲线f(x,y)=0相交。如果充分利用“点在曲线内部”这一充要条件和性质解题,不仅求解思路清晰、和谐、优美,而且解题过程简捷、明快,可收到事半功倍的效果。下举数例说明。例1.已知圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)y=7m+4(m∈R),证明:不论m取什么实数,直线L与圆恒交于两点。解析:本题的常规解法是:把直线代入圆方程中并整理成有关一元二次方程,…  相似文献   

7.
在平面上引入直角坐标系以后,一般曲线可以用方程F(x,y)=0表示,这个方程叫做曲线方程,但如果方程F(x,y)=0中含有参数(主要变量x、y以外的变数),那么这个方程称为曲线族方程,它所表示的是具有某一共同性质的一些曲线。曲线族方程在求曲线的方程,求点的轨迹,研究曲线的形状以及位置关系等方面有着广泛的应用。  相似文献   

8.
在处理直角坐标系xOy内的两点集 M={(x,y)|f(x,y)=0,x∈A,y∈B}, N={(x,y)|g(x,y)=0,x∈C,y∈D}的交集问题时,容易想到用代数的方法考虑方程组{f(x,y)=0 g(x,y)=0}在区域p={(x,y)|x∈A∩C,y∈B∩D}内是否有解的问题,要在平面子区域p内判断一个方程组是否有解,一般说来比在整个平面内判断要困难得多,然若能注意到两点集M、N的几何性质  相似文献   

9.
设f(x,y)=0为平面内的一条直线或非退化的实圆锥曲线。那末f(x,y)>0(或<0)表示平面上被上述直线或曲线所划分的某一区域。关于直线或曲线划分平面为区域的一些结论,在解题中常常被用到,但是都未证明。本文用一个较为简明的初等方法,证明这些结论。  相似文献   

10.
正圆锥曲线之间时常会有一些统一的性质,它体现了数学的统一美.笔者在研究2014年高考江西卷理科第20题的过程中,发现了圆锥曲线的一个漂亮的统一性质性质,特整理出来,与同行共赏之.命题1如图1,已知椭圆C:x2/a2+y2/b2=1(ab0)的右焦点为F,直线AF⊥x轴,P(x0,y0)(y0≠0)为C上任一点,C在点P处的切线为l,l与直线p(c)  相似文献   

11.
如果我们约定:在直角坐标平面上,含有焦点的区域为圆锥曲线的内部(其中圆的内部指含有圆心的区域)那么容易得到:点P(r_0.y_0)在圆r~2 y~2=r~2内部的充要条件是r_0~2 y_0~21;在抛物线y~2=2pr内部的充要条件是y_0~2<2pr.[若把条件中的“>”(“<”)号改为“<”(“>”)号,则条件变为点P在圆锥曲线外的充要条件,证明从略].  相似文献   

12.
为了提高同学们的应试能力,特别是能够快捷地解答有关选择题和填空题的能力,本文归纳总结出圆锥曲线部分的实用小结论,以供参考.1椭圆1)椭圆的一般式方程:mx2 ny2=1(m>0,n>0,m≠n)2)椭圆的面积公式S=πab.3)点P(x0,y0)在椭圆xa22 by22=1(a>b>0)内部xa220 yb202<1;点P(x0,y0)在椭圆xa22 yb22=1外部ax202 yb202>1.图14)椭圆焦点弦及焦点三角形的性质:如图1,设椭圆C:xa22 by22=1(a>b>0),左焦点F1(-c,0),右焦点F2(c,0),P(x0,y0)是椭圆上的一点,则①焦半径公式:|PF1|=a ex0,|PF2|=a-ex0.②椭圆上不同3点A(x1,y1)、B(x2,y2)、C(x3,y3),则相…  相似文献   

13.
(人教版)数学第二册(上)教案第171页[四、圆锥曲线的切线方程]中间一段:[若经过圆或椭圆外部一点,双曲线内部(不包含双曲线两焦点的平面区域,如满足x2/a2-y2/b2<1的点集)一点,抛物线外部(不包含抛物线焦点的平面区域,如满足y2>2px的点集)一点,都可以分别作圆、椭圆、双曲线、抛物线的两条切线].这段话中,对双曲线内部一点,都可以作双曲线的两条切线是不妥的,如:设双曲线x2/a2-y2/b2=1,根据渐近线的性质,我们知道过原点(0,0)作不出双曲线的切线.  相似文献   

14.
定理过定点P(x_0,y_0)的动直线与圆锥曲线交于两点P_1、P_2,则过P_1、P_2的切线交点共线于直线T(见图1,直线T称极线) 证明见参考资料《平面解析几何》辞典(唐秀颖主编) 推论1 若点P在对称油x(y)轴上,则直线T垂直于对称轴x(y)轴。[注] 推论2 若点P和圆锥曲线的焦点重合,则直线T和圆锥曲线的准线重合。推论3 若点P与圆锥曲线的准线和坐标轴的交点重合,则直线T过曲线的焦点且  相似文献   

15.
大家知道,若已知曲线C的方程为F(x,y)=0,且点P(x0,y0)在曲线C上,则有关系式F(x0,y0)=0.这一关系我们常用来解题.而若点P(x0,y0)在曲线外,则有关系式F(x0,y0)&;lt;0或F(x0,y0)&;gt;0,这一关系常被忽略.下面就谈其应用.  相似文献   

16.
高中解析几何的研究对象是平面曲线的形状、位置和曲线与曲线之间的关系,而三角形是平面内最简单的几何图形,它的很多性质可以用来研究平面图形或平面曲线的几何性质,因此,解析几何与三角形有不解之缘.一、借助三角形的边、角等基本量的计算,来掌握解析几何中的位置关系的演绎【例1】在△ABC中BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B(1,2),求点A和点C的坐标.解:∵A点既在BC边的高线上,又在∠A的平分线上,联立y=0与x-2y+1=0,解得A(-1,0).于是kAB=2-01-(-1)=1,而x轴是∠A的平分线,∴kAC=-1,故AC所…  相似文献   

17.
求动弦的中点轨迹,历来都是高考的重点、难点,也是热点.本文介绍三种解法、思路新颖、清晰、解法简捷、达到化繁为简,化难为易目的.1用中心对称求二次曲线弦的中点轨迹我们知道,圆锥曲线1C:F(x,y)=0,关于点00M(x,y)中心对称的曲线2C的方程是:00F(2x?x,2y?y)=0.若曲线1C和2C相交  相似文献   

18.
类比点与圆的位置关系的有关结论,我们容易知道,点P(x0,y0)在椭圆内部的充要条件是:(若把不等号改为相反的方向,则为点P在椭圆外部的充要条件,证明从略).应用这一结论,可使许多问题的解答简捷、巧妙.下面从五个方面说明这一  相似文献   

19.
概念: (1)曲线C上的点的坐标都是方程f(x,y)=0的解; (2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点, 称方程f(x,y)=0为曲线C的方程.充分利用曲线与方程的关系,可简化问题的求解. 例1 过点P(-1,1),作直线与椭圆x2/4+y2/2=1交于A、B两点,若线段AB的中点恰  相似文献   

20.
各种数学资料中 ,经常出现如下一类问题 :点 M为圆锥曲线上一动点 ,求它到圆锥曲线的一个焦点 F和平面上一定点 A的距离和的最值 .大多数学生对这类问题感到困难 ,不知如何入手 .本文利用圆锥曲线的定义巧妙地求出这类问题 .1 椭圆、双曲线、抛物线中的有关结论1.1 椭圆结论 1 设椭圆 x2a2 + y2b2 =1(a >b>0 )的左、右焦点分别为 F1 、F2 ,平面上一定点 Q(x0 ,y0 ) ,M为椭圆上任意一点 .(1)定点 Q(x0 ,y0 )在椭圆内部 (即 x20a2 + y20b2<1) ,则 | MF2 | + | MQ|的最小值是 2 a -| QF1 | ;最大值是 2 a + | QF1 | .(2 )定点 Q(x0 ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号