首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由于弦中点的坐标取决于弦的两端点坐标和,弦斜率由弦的两端点坐标差而定,这对两端点坐标的孪生兄弟,互帮互助,它们的直接关系孕育在设点、代入、作差之中,它在解决有关弦斜率、隐含弦中点的问题时,若巧设弦中点,妙用作差法,用弦中点坐标作辅助元,解法最简捷.1斜率为定值的弦例1斜率为1的直线l与双曲线3x~2-y~2=1相交于不同的两点A、B,若A、B两点到直线  相似文献   

2.
弦的中点取决于弦的两端点的坐标和,弦的斜率由弦的两端点的坐标差而定,它们的直接关系孕育在设点、代人、作差之中.在解决有关弦的斜率、弦的中点的问题时,可巧设弦中点,妙用点差法.  相似文献   

3.
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".一、以定点为中点的弦所在直线的方程例1过椭圆x2/16+y2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.  相似文献   

4.
<正>我们知道,若设直线与圆锥曲线的两交点坐标分别为A(x1,y1),B(x2,y2),将它们分别代入圆锥曲线方程并对所得两式作差,可得到一个弦AB的中点坐标与直线AB的斜率(若斜率存在)之间的关系式,由此可以大大减小运算量,我们称这种代点作差的方法为"点差法".当然,"点差法"的运用有一定的局限性,类似的  相似文献   

5.
中点弦问题是解析几何中的重点、热点问题.解圆锥曲线的中点弦问题,很多学生习惯于用所谓“点差法”:首先设出弦的两端点坐标,然后代人圆锥曲线方程相减,得到弦中点的坐标与所在直线的斜率的关系,从而求出直线方程.但是,有时候符合条件的直线是不存在的,这时使用“点差法”便会走入“误区”.下面问题中便有学生经常掉入“陷阱”.题目:已知双曲线 x~2-y~2/2-1,问是否存在直线 l,使 M(1,1)为直线 l 被双曲线所截弦 AB 的中点.若存在,求出直线 l 的方程;若不存在请说明理由.错误解法1:(点差法)设直线与双曲线两交点 A、B 的坐标分别为(x_1,y_1),(x_2,y_2),M 点的坐标为(x_M,y_M).由题设可知直  相似文献   

6.
"点差法"是圆锥曲线中的常见方法,如果能恰当使用,可以降低运算量,优化解题过程.我们对"点差法"的掌握也有境界高低之分,特举以下几例,谈谈点差法在应用中的三重境界.襛术:熟练应用,解决中点和斜率相关问题1.点差法的步骤设直线与圆锥曲线的交点坐标为A(x1,y1),B(x2,y2),将A,B坐标代入圆锥曲线方程,两式作差后分解因式,得到一个与弦的中点和斜率有关的式子,我们称之为"点差法".应用"点差法"的常见题型有:求中点弦方程、求弦中点轨迹、垂直  相似文献   

7.
在解答平面解析几何中直线与圆锥曲线位置关系时,若设直线F(x,y)=0与圆锥曲线G(x,y)=0的交点A、B(弦的端点)坐标为(x1,y1)、(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".  相似文献   

8.
<正>在求解圆锥曲线一类问题时,若题目中给出直线与圆锥曲线相交被截得线段中点坐标的时候,把直线和圆锥曲线的两个交点坐标代入圆锥曲线的方程,然后将两个等式作差,得到一个与弦的中点坐标和斜率有关的式子,从中求出直线的斜率,然后利用中点求出直线方程。通常我们将与圆锥曲线的弦的中点有关的问题称之为圆锥曲线的"中点弦问题",把这种代点作差的方法称为"点差法"。"中点弦问题"如果能适时运用点差法,  相似文献   

9.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

10.
《考试周刊》2019,(13):75-76
对于中点弦问题同学们习惯用"点差法"解决,首先回忆一下点差法的步骤:1.设点,设出弦的两端点坐标;2.代入,代入圆锥曲线方程;3.作差,两式相减,再用平方差公式展开;4.整理,转化为斜率与中点坐标的关系式,然后求解。  相似文献   

11.
<正> 求过定点的双曲线的中点弦问题,通常有下面两种方法: (1)点差法,即设出弦的两端点的坐标代入双曲线方程后相减,得到弦中点坐标与弦所在直线斜率的关系,从而求出直线方程. (2)联立法,即将直线方程与双曲线方程联立,利用韦达定理与  相似文献   

12.
解过定点的双曲线的中点弦问题,通常有下面两种方法: (1)点差法,即设出弦的两端点的坐标代入双曲线方程后相减,得到弦中点坐标与弦所在直线的斜率的关系,从而求出直线方程. (2)联立法,即将直接方程与双曲线方程联立,利用韦达定理与判别式求解.  相似文献   

13.
直线与圆锥曲线相交弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题,锯决问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关...  相似文献   

14.
点差法设出直线与圆锥曲线的两个交点A(x1,y1),B(x2,y2),将两点的坐标分别代入圆锥曲线方程,将所得两式作差.适用范围已知线段AB的中点,求直线AB(的斜率);已知直线  相似文献   

15.
中点弦问题是解析几何中的重点、热点问题。解圆锥曲线的中点弦问题,很多学生习惯于用所谓“点差法”:首先设出弦的两端点坐标,然后代入圆锥曲线方程相减,得到弦中点的坐标与所在直线的斜率的关系,从而求出直线方程。但是,有时候符合条件的直线是不存在的,这时使用“点差法”便会走入“误区”。下面问题中便有学生经常掉入“陷阱”。  相似文献   

16.
张伟建 《中学教学参考》2012,(32):27+37-27,37
圆锥曲线问题是高中数学的难点之一,圆锥曲线的弦的中点有关问题是常考查的内容.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解,过程繁琐,计算量大.“点差法”是由弦的两端点坐标代人圆锥曲线的方程,得到两个等式相减,可得一个与弦的斜率及中点相关的式子,再结合有关条件来求解.  相似文献   

17.
本文试图通过解几中常见的几类问题分门别类地阐述“三剑客”(斜率公式、中点坐标、根与系数关系)出没于江湖的着陆点,以及三者联袂表演的结合点,希望读者能够体会到他们的“英雄本色”.一、与中点弦及弦的中点有关的问题【例1】过点A(2,1)的直线与双曲线x2-y22=1交于P1,P2两点,求弦P1P2中点P的轨迹方程.分析1:设P1(x1,y1),P2(x2,y2),P1P2弦的中点P(x0,y0),则x21-y212=1x22-y222=1,作差得y1-y2x1-x2=2×x1+x2y1+y2=2×x0y0(中点坐标公式),而AP的斜率kAP=y0-1x0-2=kP1P2=y1-y2x1-x2,∴y0-1x0-2=2×x0y0,化简得:2x20-4x0=y20-y0,所以P…  相似文献   

18.
<正>直线与圆锥曲线相交所得弦的中点问题是解析几何中的重要内容之一,也是高考的热点问题,这类问题一般有以下几种类型:(1)求中点弦所在的直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦的中点坐标问题等.其解法有点差法、待定系数法、参数法以及中心对称变换法等,但最常用的方法为点差法和待定系数法.一、求中点弦所在直线方程问题【例1】已知一直线与椭圆x24+y22=1交于A、B  相似文献   

19.
<正>解析几何中经常出现与中点坐标公式有关的问题.奇怪的是,在三点共线的前提下运用中点横坐标公式,与运用中点纵坐标公式有时得出的结果不一样,这是为什么呢?一、案例呈现例1 过点P(0,1)作直线l与直线l_1:2x+y-8=0和l_2:x-3y+10=0分别交于A、B两点,线段AB的中点为P,求直线l的方程.解法1 (1)若直线l的斜率不存在,则l的方程为x=0,与l_1\,l_2的方程联立方程组,可  相似文献   

20.
在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为(x1,y1)、(x2,y2),代人圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”,此法有着不可忽视的作用,其特点是巧代斜率.本文列举数例,以供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号