首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
文[1]给出如下结论:设x,y,z∈R^+,则x/(2x+y+x)+y/(2y+x+z)+z/(2z+x+y)≤3/4.文[2]将这一结论进行指数推广,得到  相似文献   

2.
一类分式不等式的联想   总被引:3,自引:0,他引:3  
文[1]提出并证明如下分式不等式:问题1已知x、y、z为正实数,求证:x/(2x y z) y/(x 2y z) z/(x y 2z)≤3/4.其后,许多文章给出了该不等式的证明,如文[2]、文[3],笔者再给出一种简单的证法.  相似文献   

3.
题已知x、y、z均为正实数,求证:x/2x+y+z+y/x+2y+z+z/x+y+2z≤3/4(1996年《中等数学》第2期数学奥林匹克问题初40题)文[1]、[2]分别给出了上述不等式的一种证法.本文再给出几种新证法.  相似文献   

4.
原问题x,y,z∈(0,+∞)且x2+y2+z2=1,求x+y+z-xyz的值域.解读文[1]~[6]给出的各种初等解法,可谓"各显神通".原问题的条件:x,y,z∈(0,+∞)且x2+y2+z2=1,即点(x,y,z)在第一卦限的三维单位球面上,问题为求目标函数:f(x,y,z)=x+y+z-xyz的值域.  相似文献   

5.
一个不等式的正确证明   总被引:1,自引:0,他引:1  
一个不等式 若x ,y ,z≥0 ,xy yz zx =1 ,则1y z 1z x 1x y≥52 ( =|x ,y ,z中一个为0 ,两个为1 ) . ( )据所知,( )式首出文[1 ],然后又见于文[2 ]、文[3 ],但其证明都隐含实质性缩小变量取值范围的错误.下面重予证明.证明:不妨设x≥y≥z≥0 ,由条件知x≥y >0 ,0≤yz≤13 ,x =1 -yzy z ,于是( )式 2 [(x y) (z x) (x y) ( y z) ( y z) (z x) ]≥5 (x y) ( y z) (z x) 2 [(x2 y2 z2 ) 3 (xy yz zx) ] ≥5 [(x y z) (xy yz zx) -xyz] 2 [(x y z) 2 1 ]≥5 [(x y z) -xyz] 2 (x y z) 2 -5 (x y z) 2 5x…  相似文献   

6.
试题(2005)已知x,y,z是正数,求证x/√y+z + y/√z+x + z/√x+y≥√3/2(x+y+z). 文[1]将其推广为:  相似文献   

7.
文[1]由一个参数不等式导出如下推论: 设x,y,z∈R^+,0≤t〈1,则x/tx+y+z + y/ty+x+z + x/tz+x+y ≥3/t+2(1)  相似文献   

8.
题目 已知x、y、z>0,xyz=1.求证:(x+y-1)2/z+(y+z-1)2/x+(z+x-1)2/y≥x+y+z. 在文[1]中,作者给出的证法虽好,但不利于推广.本文中笔者给出此不等式的四种证法及推广.  相似文献   

9.
2005年全国高中数学联赛加试第2题为:设正数a,b,c,x,y,z满足cy+bz=a,az+cx=b,bx+ay=c,求函数f(x,y,z)=x2/1+x+y2/1+y+z2/1+z的最小值. 文[1]得到该问题等价于:  相似文献   

10.
已知x、y、z为正实数,求证:x/(2x+y+z)+y/(x+2y+z)+z/(x+y+2z)≤3/4. 这是1996年《中等数学》第2期数学奥林匹克初赛40题,文[1]用构造函数法证明此不等式,文[2]分别用排序不等式、构造向量的方法又给出了三种不同证明方法,但它们的证明思路独特、方法技巧性较强.本文将通过换元法使用均值不等式给出证明,过程自然、简捷,容易操作、推广.  相似文献   

11.
一道美国数学月刊征解题的简解   总被引:1,自引:1,他引:0  
题目设x,y,z∈(0,+∞),且x2+y2+z2=1,求函数f=x+y+z-xyz的值域.这是一道美国数学月刊征解题,文[1]、[2]、[3]、[4]分别给出了一个解答,都很巧妙,本文给  相似文献   

12.
设F是△ABC内的费尔马点,延长AF、BF、CF分别交对边于A'、B'、C'.记AA'=x,BB'=y,CC'=z.文[1]、[2]分别给出如下结果:1/x+1/y+1/z≥3/4r+1/2R.(1)  相似文献   

13.
一个不等式的下界估计   总被引:2,自引:0,他引:2  
文 [1]提出了如下猜想 :设 x,y,z∈R ,则xx y yy z zz x≤ 322 .1文 [2 ]中运用均值不等式和导数知识证明了 1式 .笔者将给出 1的左式的下界估计 :设 x,y,z∈R ,则xx y yy z zz x>1. 2证明 记 M=max{ x y,y z,z x} ,则有xx y yy z zz x>xM yM zM=(x y z ) 2M=(x y z) 2 (xy yz zx)M>x y zM >1.另证  xx y yy z zz x>xx y z yx y z zx y z=(x y z ) 2x y z=1 2 xy 2 yz 2 zxx y z >1.当 x→ 0 ,y→ 0时 ,2的左式→ 1.这说明常数 1是不等式 2的最佳下界一个不等式的下界估计@安振平$陕西省永寿县中学!7134001 刘保乾.试谈发现三…  相似文献   

14.
W.Janous猜测:设x,y,z>0,则x2-z2/y z y2-x2/z x z2-y2/x y≥0文[1]证明了(1)式的如下推广: 设xi>0(i=1,2,…,n),n≥3,记S=x1 x2 … xn,则当k>0时,有xk1-xkn/S-x1 xk2-xk1/S-x2 … xkn-xkn-1/S-xb≥0(2)当k<0时,(2)式不等号反向.  相似文献   

15.
文[1]例1给出如下一个不等式: 设x,y,z是正实数,且xyz=1.证明x3/(1 y)(1 z) y3/(1 x)(1 z) z3/(1 x)(1 y)≥3/4.①  相似文献   

16.
文[1]建立了一个新颖的带参数的分式不等式: 设a,b,c,x,y,x∈R ,若t>1,则有 xa2/tx y z yb2/ty x z zc2/tz x y≤1/t-1((a2 b2 c2)-(a b c)2/t 2)…(1)  相似文献   

17.
1引文《美国数学月刊》2004年1月问题11057[1]为:设x、y、z为正实数,矩形ABCD内部有一点P,满足PA=x,PB=y,PC=z,求矩形面积的最大值.文[2]用微分法给出了问题的一个解答,得到矩形面积的最大值为xz y x2 z2-y2.文[3]分别用柯西不等式和托勒密不等式给出了该问题的初等解法.本文将P点的位置由原问题中的矩形内部弱化为矩形所在平面上一点,得到如下主要结论.定理设x、y、z为正实数,矩形ABCD所在平面上有一点P,满足PA=x,PB=y,PC=z,则矩形面积的最大值为xz y x2 z2-y2当x=min{x,y,z};或z=min{x,y,z}时,矩形面积的最小值等于y·x2 z2-y2-…  相似文献   

18.
一个不等式的推广   总被引:1,自引:0,他引:1  
文 [1 ]提出一个猜想不等式 :设 x,y,z∈ ( 0 , ∞ ) ,则有xx y yy z zz x≤ 322 . ( 1 )文 [2 ]应用导数给出了证明 ,文 [3]又给出其下界估计xx y yy z zz x>1 . ( 2 )现将其推广 :设 x,y,z∈ ( 0 , ∞ ) ,n≥2 ,则有1 xx y,yy z>yy z,n zz x>zz x,所以n xx y n yy z n zz x>xx y yy z zz x>xx y z yy z x zz x y=1 .再证右端 .当 n=2时 ,由 ( 1 )知 ,不等式 ( 3)显然成立 .现设 n>2 ,…  相似文献   

19.
问题:设x,,z∈(0,∞),x2+y2+z2=1,函数f=x+y+z-xyz的值域. 文[1]、[2]、[3]分别就此问题进行了深入的研究,出了不同的解法,文[1]、[2]、[3]的解答可以看出这是一个极富挑战性的初等数学问题.  相似文献   

20.
文[1]由不等式:若0≤x,y,x1,y1≤1,x+x1=1,y+y1=1,则L2=√x^2+y^2+√x^2+y1^2+√x1^2+y1^2≤2+√2(1),猜想不等式:若0≤x,y,z,x1,y1,z1≤1,x+x1=1,y+y1=1,z+z1=1.[第一段]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号