首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
例已知:如图1 △ABC中,AB=AC、PE⊥AB.PF⊥AC,BD⊥AC.求证:BD=PE+PF.一、截取法一条线段等于两条线段的和,可在最长线段上截取一条与其中一条较短的线段相等,再证明剩下的线段与另一条线段相等,  相似文献   

2.
根据三角形面积关系得出线段(底、高)关系,是一种较好的解题方法. 例1 如图1,△ABC中,AB=AC,BD是高,P为BC延长线上一点,PE⊥AB,PF⊥AC,垂足分别为E、F.求证:PE=BD PF. 分析:证明线段和差关系的常规思路是截长或补短,可利用全等实现线段的转移;而本题则可由高想  相似文献   

3.
研究“点”移动组成变化的线段、图形,是同学们学习中的一个难点,也是中考的一个考点,现通过以下例题的讲解,帮助同学们正确解答有关“动点”方面的问题。一、“动点”求定值例1在直角三角形ABC中,∠C=90°,D是BC上一点,且AD=BD,P是AB上一动点,PE⊥BC,PF⊥AD,垂足为E、F。求证:PE PF为定值。分析:P点在AB上移动,因此PE、PF是变化的线段,而固定不变的线段有AB、AC、BC、CD、AD。只能用固定不变的线段表示PE PF的值,PE PF会等于以上哪一条线段呢?下面我们用“割补法”证明PE PF=AC为定值。证明:过P点作PH⊥AC,垂足…  相似文献   

4.
1.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证BC⊥BD,且BC=BD。 分析:根据题目要求,画出图形如图1。欲证BC⊥BD且BC=BD,只需证△PCB≌△PDB,这是因为△ACB为等腰直角三角形,故∠ABC=45°,而此时∠DBP=45°.这样∠DBC=45° 45°=90°故BC⊥BD.而BC=BD是显然的。以下给出证明。  相似文献   

5.
例 1 .求证等腰三角形底边上任意一点与两腰的距离和等于腰上的高。已知 :△ ABC中 ,AB=AC,P为 BC上任意一点 ,PE⊥ AB,PF⊥ AC,CD⊥ AB。如图 1。求证 :PE PF=CD。证明 :过 P点作 PM⊥ CD,∵ PE⊥ AB,CD⊥ AB,∴四边形 PMDE是矩形 ,∴PE=DM。∵PM⊥ CD,CD⊥AB,∴AB∥PM,∴∠ B=∠ MPC。∵AB=AC,∴∠ B=∠ ACB,∴∠ MPC=∠ ACB。在△ MPC和△ FCP中 , ∠ PMC=∠ CFP, ∠ MPC=∠ ACB,  PC=CP,∴△ MPC≌△ FCP,∴PF=CM,∴CD=DM CM=PE PF。反思 1 .此题条件等腰三角形可变为等边三角形。…  相似文献   

6.
2002年安徽省初中升学统一考试有如下一道选择题: 如图1,在矩形AB=3中,AD=3,AD=4,P是ad上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为( )  相似文献   

7.
只量一次     
本文所述的是用刻度尺解决只度量一次的问题 ,此类问题如果不限定度量的次数 ,显然容易解决 ,如果限定只量一次 ,那就需要仔细揣磨 ,认真分析 .图 1        图 21 通过测量计算长度例 1 如图 1,已知 :△ABC中 ,AB=AC =10 ,P为底边BC上任意一点 ,PE、PF分别垂直AB、AC于E、F ,只量一次 ,求PE PF的长 .分析 容易证明PE PF等于腰上的高BD(不再赘述 ) ,因此直接测量高BD即可 .另辟蹊径  (如图 2 )同上 ,容易证明PE PF=BD ,作底边BC上的高AH ,由于S△ABC =12 AC·BD ,S△ABC =12 BC·AH ,所以AC·BD =BC…  相似文献   

8.
我们都知道正方形是轴对称图形,它的对称轴有两条,本文只研究其中的一条——对角线所在的直线,解题时如果能考虑到这一点,往往能达到事半功倍之奇效.例1如图1,点P是正方形ABCD的对角线BD上的一点,PE⊥BC于点E,PF⊥CD于点F,连接PA、EF.求证:PA=EF.简析BD是对称轴,点P在对称轴上,点A、C是对称点,根据轴对称的性质得PA=PC,连接PC,因为PE⊥BC,PF⊥CD,∠BCD=90°,所以四边形PECF是矩形,所  相似文献   

9.
<正>我们在探索数学世界的道路上,要注重掌握知识技能和方法,正所谓"一法通一片",掌握的方法多了,你的数学探索之路才能越走越宽广!本文介绍一种几何中常用的方法——等积法.例1如图1所示,在矩形ABCD中,AD=3,AB=4,P是AB上一动点,PE⊥AC于点E,PF⊥BD于点F,求PE+PF的值.  相似文献   

10.
如图1,已知在AABC中,AB=AC,P是BC上任一点,PD⊥AB于D,PE⊥AC于E,CF⊥AB于只求证:CF=PD+PE.  相似文献   

11.
命题设四面体ABCD的棱AB、AC、AD两两互相垂直,顶点B、C、D到对面的距离依次为a、b、c,P为面BCD上任意一点,PE⊥平面ACD于E,PE⊥平面ABD于F,PG⊥平面ABC于G,令PE=x,PF=y,PG=z,则x/a+y/b+z/c=1.  相似文献   

12.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

13.
<正>矩形的对角线相等是矩形的性质之一,巧妙地利用这个性质,可以使某些问题得到简单而快捷的解决.一、求最值例1如图1,在ΔABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一个动点,PE⊥AB于点E,PF⊥AC于点F,连结EF,求线段EF长度的最小值.BPC F E A图1%分析与解连结AP.∵PE⊥AB,PF⊥AC,  相似文献   

14.
问题:如图1,点P是正方形ABCD的对角线BD上任意一点,PE⊥BC,PF⊥CD,垂足分别是E,F.求证:AP上EF.解决:简证:如图2,延长FP交AB于点H,延长EP交AD于点G,易得四边形BEPH和PFDG均为正方形,∴PE=PH,PF=PG,∴矩形AHPG≌矩形FCEP,∴绕点P把矩形AHPG顺时针旋转90°,再向下平移  相似文献   

15.
一、证明三角形两内角的和为90°例1 已知:如图,△ABC中,AD⊥BC于D,AD=BD,E是AD上一点,且DE=DC,延长BE交AC于F。  相似文献   

16.
2002年安徽省初中升学统一考试有如下一道选择题: 如图1,在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为( ) (A)12/5 (B)2(c)5/2(D)13/5 该动点题出得灵巧,虽以选择题出现,但其解题的思路空间十分广阔,是培养和考查学生思维能力的一道好题.本文现提供四种不同的解法,供读者参考.  相似文献   

17.
等腰三角形底边上任意一点到两腰距离的和等于腰上的高.已知:如图1,在△ABC中,AB=AC,P是BC上任一点,PE⊥AB,PD⊥AC,CF⊥AB,E、D、F分别为垂足. 求证:CF=PE+PD.  相似文献   

18.
题目:如图1,已知P为锐角△ABC内一点,过P分别作BC,AC,AB的垂线,垂足分别为D,E,F,BM为∠ABC的平分线,MP的延长线交AB于点N.如果PD=PE+PF,求证:CN是∠ACB的平分线.证法1:过N作NQ⊥AC于Q,NH⊥BC于H,过M作ML⊥AB于L,MR⊥BC于R,连NR交PD于G.因为BM平分∠ABC,所以ML=MR.又PF∥ML,PG∥  相似文献   

19.
在学习等腰三角形时,我们曾经遇到过这样一个几何命题:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.如图1,已知在△ABC中,AB=AC,P是BC上任一点,PD⊥AB于D,PE⊥AC于E,CF⊥AB于F.求证:CF=PD+PE.对于该题,一般学生会想到截长法与补短法.  相似文献   

20.
2001年江苏省第十五届初中数学竞赛第二试初二第17题为:如图1,△ABC中,AC=BC,∠ACB=90°D是AC上一点,AE⊥BD交BD的延长线于E,且AE=1/2BD,求证:BD是∠ABC的角平分线.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号