首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The National Statement on Technology Education will soon be released in Australia. The statement advocates adesign,make andappraise approach to technology education. The document includes Year One children and provides exemplars of curriculum activities for early childhood children. Although much curriculum development in technology education for primary and early childhood has taken place in the UK, little research has been conducted within the early childhood area in Australia. This paper describes a study which sought to investigate how thedesign,make andappraise approach could be implemented within early childhood using existing materials, procedures and teaching programmes. In particular, the pre-school programme was considered to see if the approach was suitable for young children, and if girls could be encouraged into this newly defined area of study. Specializations: early childhood science education, early childhood technology education.  相似文献   

2.
A study, originally don in Australia in 1983, was replicated in an urban-suburb in the Unitd States. The Australian project vivolved matched pairs of year-fiv teachers in one of two workshops. One workshop taught the skills of teaching electricity, while the other one discussed issues in gender equity in science education (active participation of both girls and boys, comparble student-teacher interactions, and research findings concerning equity). The U.S. study provided three types of workshops (skills, equity and skills, and equity) for comparable groups of fourth and fifth grade teachers. All teachers and their students were subsequently obseved during lessons involving an electricity unit, queried both students and teachers concerning the appropriateness of different fields of science for boys and girls and their interest and aptitudes in doing various types of science. Results from both studies suggest that gender differences in student attitudes toward science may be amellorated by specific types of teacher workshop. Specializations: Gender research, science teacher education, science education national policy. Specializations: Elementary and middle school science education, classroom research. Specializations: Secondary science education, data analysis.  相似文献   

3.
This paper outlines work in progress on a study which is investigating what children understand about natural and processed materials and how scientific learning on the topic could be extended and reinforced in the home. Four different interview schedules for eliciting children's understanding were developed and tried out. Children's understandings prior to each of the four units, and at the conclusion of the teaching program were documented through individual interviews. Family interviews were also conducted prior to and at the conclusion to the teaching. In this paper the difficulties associated with researching young children's thinking are explored. The rationale for a storytelling context for the interviews is presented, and there is a preliminary discussion on the effectiveness of the methodology utilised. Specializations: early childhood science education; the Curriculum Corporation K-3 Science Program. Specializations: primary science education, teacher education in science, adult experiences of science and technology; the K-3 Science Program.  相似文献   

4.
This paper describes how an idea for technology education materials developed into a process for producing unique curriculum modules for teaching technology in a gender-inclusive way to primary children. Using a case-study format, the paper describes the interaction between participants, the sequential evolution of the materials themselves and the degree to which success was achieved in terms of the original goals. The study demonstrates how an awareness of gender bias needs to be a feature from the earliest stages of curriculum development, through to the trialling and modification stages. The curriculum materials were a product of effective cooperation between teachers, science educators and community representatives. They utilise a “process” approach to the teaching of technology and in this presentation, we demonstrate how this same approach is a useful framework for describing this particular curriculum development. Specializations: primary science and technology education, gender issues. Specializations: diagnosis of student learning and teaching for conceptual change, technology education, curriculum evaluation. Specializations: affective aspects of science and technology education, gender issues.  相似文献   

5.
This paper is based on findings from a three year collaborative action research project on classroom teaching and learning. The research, which involved 33 teachers, over two thousand students from six schools, and the authors, centred on exploring how various features of the classroom context influence teaching and learning processes. We interpret project findings as indicating the importance of balance between cognition and affect for effective teaching and learning. We advance the notion of challenge as a way of conceptualising this balance. Challenge comprises a cognitive/metacognitivedemand component and an affectiveinterest component. Nine major features of a teaching/learning event were found to interact to influence these cognitive and affective components of challenge. Specializations: Collaborative research on science teaching and learning; staff development and school improvement; quality of science education. Specializations: Learning and teaching science; pre-service teacher education. Specializations: teacher development in science education; technology education. Specializations: Science and teachnology curriculum, environmental education, educational disadvantage. Specializations: learning theory, probing of understanding, conceptual change.  相似文献   

6.
This paper describes a naturalistic study of secondary pre-service science teachers and explores the process of implementing a constructivist approach to science teaching. Specializations: Gender and science, preservice education.  相似文献   

7.
Technology encompasses the goods and services which people make and provide to meet human needs, and the processes and systems used for their development and delivery. Although technology and science are related, a distinction can be made between their purposes and outcomes. This paper considers four possible approaches to teaching students about the relationship between technology and science. Atechnology-as-illustration approach treats technology as if it were applied science; artefacts are presented to illustrate scientific principles. Acognitive-motivational approach also treats technology as applied science, but presents technology early in the instructional sequence in order to promote student interest and understanding. In anartefact approach, learners study artefacts as systems in order to understand the scientific principles which explain their workings. Finally, atechnology-as-process approach emphasises the role of technological capability; in this approach, scientific concepts do not have privileged status as a basis for selecting curriculum content. Specializations: science and technology education, educational evaluation, measurement of attitudes and interests.  相似文献   

8.
The present study examined the efficacy of two different approaches to teaching designed to facilitate children's learning about science concepts and vocabulary related to objects’ floating and sinking and scientific problem-solving skills: responsive teaching (RT) and the combination of responsive teaching and explicit instruction (RT + EI). Participants included 104 children (51 boys) aged four to five years. Small groups of children were randomly assigned to one of the two intervention groups (RT, RT + EI) or to a control group. Responsive teaching (RT) reflects a common approach to teaching young children, and the combination approach (RT + EI) includes explicit instruction as well as responsive teaching. The two planned interventions were implemented with preschool children and provided evidence that (1) young children learned science concepts and vocabulary better when either responsive teaching or the combination of responsive teaching and explicit instruction was used; (2) children in the combined intervention group learned more science concepts and vocabulary and more content-specific scientific problem-solving skills than children in either the responsive teaching or control groups. Limitations, future directions, and implications for practice are also discussed.  相似文献   

9.
This pilot study set out to ascertain whether the level of dependence on resource material is related to teaching experience, existing understanding in mechanics, and perceived self confidence in science and technology. Details of teaching experience and qualifications were obtained from 11 experienced teachers and 10 initial teacher trainees, and understanding of mechanics was assessed by a written test. Each teacher worked through one commercially produced inservice pack about levers, pulleys or gears, and then prepared a 30 minute session for 4 ten year old children. Videos of the sessions were analysed with respect to the extent to which the pack was the sole focus; the amount of integration with other teaching aids and approaches; and the extent individual children's needs were satisfied. Although science qualifications influenced teacher confidence, they were not accurate predictors of relevant knowledge and teaching competence. As the majority of teachers followed pack instructions closely, the children's needs were not always well matched. Specializations: primary science and technology, teacher education. Specialisations: science education.  相似文献   

10.
Relatively little research has been conducted to monitor the role of writing in science lessons. This paper reports the findings of four case studies concerning the teaching and writing of science in isolated one-teacher schools. The teachers participated in an intervention program that aimed to facilitate the teaching of enquiry-based science. This program introduced an innovation consisting of instructional materials and a teaching approach. A multi-site case study design was used which involved regular lesson observations at the schools over a period of 12 months. Documents in the form of the students' written reports were used to supplement data regarding the teachers' use of the innovation. There was a variation in the extent and method of use of the innovation which was evident in the students' reports. Specializations: K-6 Science and technology curriculum and instruction, teacher perceptions.  相似文献   

11.
This paper highlights the challenges and problems in developing an innovative K-3 science program to support teachers in the implementation of the national Statement and Profile in science. The program has been developed by the authors in association with the Curriculum Corporation. The paper outlines the assumptions made about teachers of young children, the role of research in the construction of the program, and the extent to which the Statement and Profile have influenced the process. The resolution of a number of key problems in this curriculum development is discussed: responding to teachers' needs for a base of science discipline knowledge, developing strategies for working scientifically with very young children, and helping teachers develop an extended understanding of the nature of science. Specializations: early childhood science and technology education. Specializations: primary science education, teacher education in science, adult experiences of science and technology, and curriculum development.  相似文献   

12.
The use of problem-solving in science instruction implies a change in the teacher's role from dispensing content information to encouraging critical reflective thinking in the student. For problem-solving to become an integral part of the science curriculum, teachers must make it the focus of their instruction. This study investigated the extent to which pre-service primary teachers used the problem-solving approach in their science instruction. It also identified the factors affecting their efforts to teach science using this approach. The issues considered are important in whether problem-solving becomes part of the science curriculum, as teaching behaviour influences student learning outcomes. Specializations: science eeducation Specializations: educational measurement, research methodology.  相似文献   

13.
This paper discusses some of the issues arising from the first year of a longitudinal study into the career development of science teachers. It deals with the influences on, and approaches to, teaching by first year science teachers. Eighteen science graduates who had completed a Diploma in Education in 1990, were interviewed about their first year's teaching experiences. The participants explored issues ranging from the influences on their approach to teaching, student learning, determinants of a good lesson, the role of pre-service teacher training, and teaching as a career. Specializations: Science education, reflective practice, teaching and learning.  相似文献   

14.
The focus of this study was on the investigation of a laboratory instructional program on electricity designed for conceptual development using constructivist principles for conceptual change. This approach was compared with a traditional laboratory approach in a quasi-experimental design. The sample was 247 grade 10 students (boys) in a large non-government urban school. Covariance analysis with the corresponding pretest as covariate showed statistically and educationally significant gains for the experimental group on cognitive but not attitudinal outcomes when compared to the traditional group. Student and teacher interview data provide some evidence for the success of the experimental approach. Specializations: physics education, constructivist approaches to in practical work. Specializations: science teacher education, learning environments, conceptual change.  相似文献   

15.
Genetics is an area of science that causes problems for children. This paper reviews initial findings from research into children's views of how inheritance works and the role this plays in their overall view of genetics. The implications these results have for the traditional approach to genetics education are outlined. An alternative approach is proposed. Specializations: teacher development, science and technology curriculum development.  相似文献   

16.
Conclusion This study suggests that most students entering science or science education units in preservice primary teacher education courses have a positive attitude to the teaching/learning of primary science and see value in all domains of science for children at this stage. This was an unexpected finding. It was of concern however, that their interest in physical science topics was so low. This may be due to previous specific experiences in secondary science. Science and science education units should build on the positive attitudes of students and could develop physical science ideas through their significance in environmental and social problems. Specializations: science education, teacher education in science. Specializations: science education policy and practice, teacher education, school effectiveness.  相似文献   

17.
This paper describes responses from 28 first-year university physics students to one question of a written test which was followed up by an interview. The study has two main research aims. Firstly, it characterises the conceptual structures of students regarding the phenomenon in question. As well as being interesting in their own right, these student understandings cast light on some broader issues regarding understanding of field representations. While students' understandings of circuit electricity are well described in the existing science education literature, their understandings of field phenomena are not. Secondly, it throws light on theoretical questions about the SOLO Taxonomy, which is the framework used to study the students' conceptual structures. Of particular interest is the nature of student thinking that marks transition from the Concrete Symbolic to the Formal SOLO mode in this area. Specializations: physics education, electricity and magnetism, conceptual structures, SOLO Taxonomy. Specializations: SOLO Taxonomy, conceptual structures, mathematics education.  相似文献   

18.
The recent nationalDiscipline Review of Teacher Education in Mathematics and Science outlines the lack of confidence of many preservice primary school teachers in teaching science. This study explores the attitudes of 170 primary school teachers in a Perth school district. By means of a simple questionnaire the perceptions and attitudes of these teachers about the following aspects have been examined: (1) background understanding of science; (2) preservice training; (3) interest in teaching science; (4) skill in teaching science; (5) confidence in the plant, animal, matter, energy areas, and (6) time spent teaching science. Besides compiling frequency responses for all teachers on these aspects comparisons have also been made on the basis of: (1) gender; (2) time of graduation, and (3) grade level taught. Specializations: Primary science, teacher attitudes. Specializations: Primary science, science teaching strategies, curriculum implementation, cognitive studies.  相似文献   

19.
To keep intuitive knowledge fluid for an extended time, we wish to encourage young children to examine continuously those intuitive explanations for natural phenomena which later become hard wired, highly resistant to development or change. To assist this we designed a learning package which integrated three extensively researched educational strategies (cooperative learning, informal inquiry and familiar context) for children to explore their notions about the topiclight. Children in a kindergarten class were encouraged to share their ideas about shadows and shadow formation with peers, as they took part in explorations of shadow formation inside and outside their classroom. Whole class discussions, small group conversations and final conversations between researcher and small groups provide insights into social and individual construction of knowledge, young children's abilities to be scientific and the social construction of gender. Specializations: children's learning in science and technology; inclusion; contexts, teaching models.  相似文献   

20.
Advocates of constructivist science recommend that school science begins with children’s own constructions of reality. This notion of the way in which students’ knowledge of science grows is closely paralleled by recent research on teachers’ knowledge. This paper draws on case study evidence of teachers’ work to show how two experienced teachers’ attempts to develop alternative ways of teaching science involved reframing their previous patterns of understanding and practice. Two alternative interpretations of the case study evidence are offered. One interpretation, which focuses on identifying gaps in the teachers’ knowledge of science teaching, leads to theconstructivist paradox. The second interpretation explores theconstructivist parallel, an approach which treats the process of teachers’ knowledge growth with the same respect as constructivists treat students’ learning of science. This approach, the authors argue, is not only more epistemologically consistent but also opens up the possibilities of helping teachers lead students towards a constructivist school science. Specializations: Teachers’ knowledge and culture, educational change, qualitative research methodology. Specializations: Teachers’ knowledge, imagery and teachers’ work, teacher collegiality, supervision of teachers’ work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号