首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.已知非空集合A={x|x2-4mx 2m 6=0,x!R},若A∩R-≠!,求实数m的取值范围.(R-表示负实数)2.关于x的方程x3-3x2-a=0有3个不同的实数解,求实数a的取值范围.3.已知a!R,求函数y=(a-sinx)(a-cosx)的最小值.4.当n!N且n≥3时,求证:n 13 n 14 … 2n1 2>1130.5.已知定点(M-1,2),直线l1:y=(a x 1),曲线C:y=$x2 1,l1与C交于A,B两点.记线段AB的中点为N,直线l2经过M,N两点,且在x轴上的截距为m,将m表示成a的函数,并求此函数的定义域.6.已知向量u=(x,y)和向量v=(y,2y-x)的对应关系可用v=f(u)表示.(1)已知a=(1,1),b=(1,0),求f(a),f(b)的坐标.(2)求…  相似文献   

2.
谈及图象变换,常常会遇到图象按向量平移与按坐标平移的问题,这两种平移并非一种变换,请看下例. 例1 已知函数f(x)=2(x-1)2 3, (1)将函数y=f(x)的图象按向量a=(1,3)平移,求平移后的图象所对应的解析式; (2)平移坐标系,使新坐标系的原点位于  相似文献   

3.
函数的最值问题 ,经常出现在中学各类试题中 ,巧妙利用向量求函数的最大值 ,最小值等 ,可以使一些函数的最值问题的思路清晰 ,解题方法简捷巧妙 ,并富于规律性 ,趣味性 .定理 A ,B为两个向量 ,则|A|2 ≥ (A·B) 2|B|2 .证明 设两向量的夹角为θ .则|A|2 =|A|2 ·|B|2|B|2≥ |A|2 |B|2 cos2 θ|B|2 =(A·B) 2|B|2 .1 巧用向量求未知数满足整式方程的代数式的最值例 1 已知 :实数x、y满足方程x2 y2-2x 4 y =0 .求x-2 y的最值 .( 1988年广东省高考题 )解 设A =(x-1,y 2 ) ,B =( 1,-2 ) .由x2 y2 -2x 4y=0 ,…  相似文献   

4.
.利用向量模的概念图 1【例 1】 已知点P是直线y=1上的动点 ,Q是OP上的动点 ,且|OP|·|OQ| =1,求动点Q的轨迹方程(如图 1) .解 :设Q(x ,y) ,(y >0 ) ,P(x1 ,1)∵ |OP|·|OQ| =1,∴x21 +1· x2 +y2 =1即 (x21 +1) (x2 +y2 ) =1①又OP ,OQ共线 ,OP∥OQ ,∴x -x1 y =0 ,即x1 =xy ②把②代入① ,并整理 ,得图 2x2 +y2 -x =0(y>0 ) .2 .利用非零向量垂直的充要条件【例 2】 已知圆x2 +(y-1) 2 =1上定点A( 0 ,2 ) ,动点B .直线AB交x轴于点C ,过C与x轴垂直的直线交弦OB的延长线于圆外一点P(如图 2 ) ,求P点的轨迹方程 .解 …  相似文献   

5.
向量是高中教材的新增内容 ,是数形结合的典型体现 ,向量与解析几何同源同宗 .用向量知识去解决两直线共线 (平行 )、垂直及夹角等问题比传统解几方法有着很大的优越性 ,对多数师生来说 ,向量方法还是一个有待发掘的宝库 .这里略举数例 ,以期抛砖引玉 .例 1 已知动点 ( x,y)满足 ( x - 2 ) 2 + ( y - 1) 2 =2 5,求 3x + 4y的取值范围 .解 :设 a =( 3,4 ) ,b =( x - 2 ,y - 1) ,a与 b的夹角为θ,则 3x + 4y =a .b + 10 =| a| | b| cosθ+ 10 =2 5cosθ + 10 .∴ 3x + 4y的最大值为 35,最小值为 - 15,即 3x+ 4y∈ [- 15,35] .例 2  ( 1995年…  相似文献   

6.
彭光焰 《中学理科》2007,(12):10-12
恰当地应用好向量和导数,许多最值问题便迎刃而解,并且利用向量和导数来求最值,容易被学生接受.为了便于比较.一、用|a||b|≥a.b求最值例1已知x,y,z∈R ,且x y z=1,求x1 4y z9的最小值.解:令a=(1x,2y,3z),b=(x,y,z),则|a|2=1x 4y 9z,|b|2=1,(a.b)2=(1 2 3)2=36.由|a|2|b|2≥(a.b)2得,1x 4y 9z≥36,当且仅当1x=2y=3z时等号成立,即x=16,y=31,z=21.∴1x 4y 9z的最小值为36.例2已知ai,bi∈R ,且∑ni=1ai=∑ni=1bi=1,求a1a 12b1 a2a 22b2 … ana 2nbn的最小值.解析:令p=(a1a1 b1,aa2 2b2,…,anan bn,q=(a1 b1,a2 b2,…,an bn),则|p|2=a1a 21b1 a…  相似文献   

7.
加强“变式”练习 减轻学生负担   总被引:1,自引:0,他引:1  
目前初中数学教学,仍普遍存在着学生负担过重,思维训练尤其是创新思维训练没有充分重视的问题。笔者认为,要解决这一问题,主要途径之一应是通过“变式”练习,让学生在一题多解、一题多变中开阔思路,提高思维能力。一、形异实同型“变式”训练为了使学生对知识的本质加以认识,教师在教学中可构造一些形异实同的“变式”练习,强化知识。例:(1)已知x,y为实数,(x-1)2 y 3=0,求x,y的值。(2)已知x,y为实数,x2 2y y2-6x 10=0,求x,y。(3)已知a2 2 b-5=22a,求a-1a-1 6a 2b 1-6 b-6a的值。(4)已知a,b,c为△ABC的三边,且a2 b2 c2=ac bc ab,求证:以a,b…  相似文献   

8.
<正>商的算术平方根化成算式平方根的商是有条件限制的,即公式(a/b)(1/2)=a(1/2)=a(1/2)/b(1/2)/b(1/2)仅当a≥0,b>0时才能成立.往往有同学忽视公式成立的条件,请看下面两道题:例1已知x+y=3,xy=2.求(x/y)(1/2)仅当a≥0,b>0时才能成立.往往有同学忽视公式成立的条件,请看下面两道题:例1已知x+y=3,xy=2.求(x/y)(1/2)+(y/x)(1/2)+(y/x)(1/2)的值.例2已知x+y=-3,xy=2.求(x/y)(1/2)的值.例2已知x+y=-3,xy=2.求(x/y)(1/2)+(y/x)(1/2)+(y/x)(1/2)的值.这两题的结构相同,区別仅在于已知条件中两数和的符号相反,但是在解法上却是不一样的.  相似文献   

9.
因式分解是初二代数中的重要内容之一 ,不论是在求代数式的值的计算还是代数式的证明中应用都十分广泛 ,现举例如下 :例 1 已知x2 - 2xy - 1 5y2 =0 ,求 xy 的值。分析 :本题利用二次三项式x2 +(p +q)x +pq =0型的因式分解 ,将x2 - 2xy - 1 5y2 =0通过因式分解化为二个二元一次方程 ,从而求出 xy 的值。解 :由已知x2 - 2xy - 1 5y2 =0得 :(x - 5y) (x +3y) =0只有当x - 5y =0或x +3y =0时 ,原式成立。∴x =5y或x =- 3y即 xy=5或 xy- 3例 2 已知 :x - 3z =5y ,求x2 - 2 5y2 +9z2 - 6xz的值。分析 :本题先从已知入手 ,通过移项得x - 3z - 5z…  相似文献   

10.
<正>一、问题问题1:若函数y=f((1/2)9-x2)的定义域是[-3,3],则函数y=f(x)的定义域为.解:因为-3≤x≤3,所以0≤(1/2)9-x2≤3,故y=f(x)的定义域是[0,3].问题2:已知函数y=f(x2-1)的定义域是[-2,2],则函数y=f(x)的定义域为.解:因为-2≤x≤2,所以-1≤x2-1≤3,故y=f(x)的定义域是[-1,3].问题3:函数y=f(2x)的定义域是[-1,1],求y=f(log2x)的定义域.  相似文献   

11.
大家都知道,判别式主要应用于判断一元二次方程根的情况,这类问题比较简单,下面介绍判别式其他方面的一些应用·一、求条件最值问题例1已知实数x,y满足x2-12y=0,求x-3y的最值·分析:运用设“k”法消去y,即可整理成x的一元二次方程·解:设x-3y=k,则y=x3-k,代入x2-12y=0,化简得x2-4x+4k=0,所以Δ=(-4)2-4×1×4k≥0,所以k≤1,所以x-3y有最大值为1,无最小值·例2已知实数x,y满足条件x2+xy+y2=1,求x2+y2的最值·解:设x2+y2=k,则x2+ky2=1,代入x2+xy+y2=1=x2+ky2,化简得(1-1k)x2+xy+(1-1k)y2=0·整理为yx的一元二次方程为(1-1k)(xy)2+(xy)+(1-1k)=…  相似文献   

12.
解答习题一方面使学生理解和巩固所学到的知识 ,另一方面也可以培养学生的思维能力 .本文通过一道解析几何题的两种解法 ,谈谈对学生思维能力的培养 .问题 :求过直线 x 2 y 2 =0与圆 x2 y2 -2 x 4 y 1 =0的两个交点和点 ( 2 ,3 )的圆的方程1 通过已知与未知的辩证关系求解分析 :如果先求直线 x 2 y 2 =0与圆 x2 y2 -2 x 4 y 1 =0的交点 ,再将两个交点和已知点 ( 2 ,3 )分别代入圆的一般方程 x2 y2 Ax By C=0 ,以求 A,B,C,将涉及二元二次方程的问题 ,做起来较繁 .由解析几何知识 ,方程 x2 y2 Ax By C λ( x2 y2 A′x B′y C′)…  相似文献   

13.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

14.
1 问题提出我们经常看到这样一道题:已知a >0 ,b >0 ,且a b =1 ,求(a 1a) 2 (b 1b) 2 的最小值.该题通常这样求解:(a 1a) 2 (b 1b) 2 =a2 b2 1a2 1b2 4=(a b) 2 -2ab 1a2 1b2 4=5 -2ab 1a2 1b2 ≥5 -2 ( a b2 ) 2 2ab=92 2ab≥92 2( a b2 ) 2=2 52 .当且仅当a =b时取等号.作为上题的推广,我们自然会想到问题1 :已知x >0 ,y >0 ,且x y =1 ,求函数f1(x ,y) =(x 1x) 3 ( y 1y) 3的最小值.对于问题1 ,我们同样可以如下求解:由题设条件可求得0 相似文献   

15.
有关曲线对称性问题的叙述是:(1)以-y代y方程不变,则曲线关于x轴对称。(2)以-x代x方程不变,则曲线关于y轴对称。(3)同时以x代y,以y代x,方程不变,则曲线关于直线y=x对称。(4)同时以-x代y,以-y代x,方程不变,则曲线关于直线y=-x对称。利用上述原理,我们可以很快求得已知曲线方程关于x轴,y轴,直线y=x,或直线y=-x为对称轴的对称方程。如果对称轴不是上述四种,而是另外直线如何求它的对称方程呢? 例1 已知对称轴是直线l:x+y-2=0,求:(1)点P(4,2)关于直线l的对称点P’,(2)直线2x-y-6=0关于直线l的对  相似文献   

16.
让我们看下面两个问题及其解答 :问题 1 :已知函数 y =f (2 x)的定义域为[1 ,2 },求函数 y =f (log2 x)的定义域 .[1]原解 :令 u =2 x,因为 y =f (2 x)的定义域为 [1 ,2 ],所以 1≤ x≤ 2 ,2≤ u≤ 4,所以函数 y =f (u)的定义域为 [2 ,4],由 2≤ log2 x≤ 4得 4≤ x≤ 1 6 ,故函数 y =f (log2 x)的定义域为 [4,1 6 ]问题 2 :已知 f (x + 1 ) =3 x + 1 ,求f (x)原解 :令 t=x + 1 ,则 t∈ [1 ,+∞ ) ,所以 x =(t-1 ) 2 ,所以 f (t) =3 (t-1 ) 2 + 1 =3 t2 -6 t+ 4 ,所以 f (x) =3 x2 -6 x + 4 ,x∈ [1 ,+∞ ) .对以上两个问题及其解答 ,相信大…  相似文献   

17.
求作一个新的一元二次方程 ,使新方程的根是原方程各根的平方 (或 k倍 )等 ,可以有以下的三种方法 ,现以初三《代数》P35B组第 2题为例 ,试说明如下。题目 :已知方程 x2 - 2 x - 1=0 ,利用根与系数的关系求作一个一元二次方程 ,使它的根是原方程各根的平方。方法 1:韦达定理法解 :设原方程的两根为 x1、x2 ,新方程的两根为y1、y2 ,则y1 y2 =x12 x2 2 =( x1 x2 ) 2 - 2 x1x2 =6,y1· y2 =x12· x2 2 =( x1x2 ) 2 =1。∴所求新方程为 :y2 - 6y 1=0。方法 2 :变换代入法解 :设新方程的根为 y,则 y=x2 。∴ x=± y ,代入 x2 - 2 x- 1=0 ,得(±…  相似文献   

18.
一、问题的提出与探究已知函数f(x)=(-3x 7)~(1/2)(0≤x≤7/3), 求y=f(x)与它的反函数y=f-1(x)的交点.一般常有这样的思路: 解:y=f(x)与y=f-1(x)相交于y=x上, 所以建立方程 x=(-3x 7)~(1/2)(0≤x≤7/3), (舍去),  相似文献   

19.
例1已知x,y,z∈R~+,且1/x+2/y+3/z= 1,求x+y/2+z/3的最小值.(第11届(00年)"希望杯")解构造向量  相似文献   

20.
题目已知4x+4y=2(x+1)+2(y+1),试求2x+2y的取值范围. 解法1:由已知得于是  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号