首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the adaptive control problem of a class of output feedback nonlinear systems with unmodeled dynamics and output constraint. Two dynamic surface control design approaches based on integral barrier Lyapunov function are proposed to design controller ensuring both desired tracking performance and constraint satisfaction. The radial basis function neural networks are utilized to approximate unknown nonlinear continuous functions. K-filters and dynamic signal are introduced to estimate the unmeasured states and deal with the dynamic uncertainties, respectively. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded, while the output constraint is never violated. Simulation results demonstrate the effectiveness of the proposed approaches.  相似文献   

2.
There exist mixed deadzone-saturation input nonlinearities and output constraint in the practical implementation environment for flexible mechanical systems, and they have crucial influences on the performance of flexible systems. In this paper, two class of flexible structures are investigated and analyzed by designing the active boundary vibration control with auxiliary systems. Based on the infinite dimensional dynamic model of flexible mechanical systems, the barrier logarithmic terms are brought into the Lyapunov function and boundary vibration control laws for maintaining the output signals within the constrained region. Besides, the auxiliary terms are designed in the control laws to compensate for mixed nonlinear inputs which integrate the deadzone and saturation characteristics. With the simulation results, the theoretical analysis for the flexible mechanical systems is verified to be correct and the designed control laws are effective.  相似文献   

3.
This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.  相似文献   

4.
This paper addresses the output feedback model predictive control (OFMPC) of the constrained polytopic uncertain system in the presence of bounded state and output disturbances. The controller is designed in such a way that the unmeasurable state of the real system is bounded by the tube whose center is the estimated state of the disturbance-free (reference) model. The infinite-horizon reference control sequence is parameterized as a free control move followed by an output feedback law based on the reference state observer. By applying the OFMPC approach, the reference model is asymptotically stable so that robust stability of the real disturbed system is guaranteed. A numerical example is provided to illustrate the effectiveness of the proposed technique.  相似文献   

5.
6.
The steering torque of automobile EPS steering system is significant for driving steering control and good driving feel. Servo motor control and external interference moment are the core factors affecting EPS steering system. With the advancement of automotive technology, the requirements of EPS control technology have been gradually improved, and the driving and handling of vehicles at high speed have become the key issues. For the current EPS steering system at high speed vibration and steering feel, active disturbance rejection EPS torque control method is proposed, EPS variable mode controller was developed. The control of the variable mode is verified by experiment and the vibration torque from the road is controlled, determine the control frequency of 30 KHz, the amount of current fluctuation is the smallest. The ADRC (active disturbance rejection controller) technology is used to suppress the interference of the road surface, finally, the validity of active immunity is verified by bench test. Steering wheel vibration torque can be reduced by an average of 28.5% to 33.3%.  相似文献   

7.
This paper studies the problem of output feedback sliding mode control (OFSMC) for fractional order nonlinear systems. A necessary and sufficient condition for the existence of a sliding surface is obtained by a new singular system approach and a linear matrix equality (LMI), which reduces the conservativeness of the system. Then an OFSMC law is designed based on a fractional order Lyapunov method, which ensures that the resulting fractional closed-loop system is asymptotically stable and the states of the fractional closed-loop system converge to the sliding surface in finite time. A fractional electrical circuit is discussed to illustrate the effectiveness of the proposed approach.  相似文献   

8.
This paper studies the problem of adaptive neural network (NN) output-feedback control for a group of uncertain nonlinear multi-agent systems (MASs) from the viewpoint of cooperative learning. It is assumed that all MASs have identical unknown nonlinear dynamic models but carry out different periodic control tasks, i.e., each agent system has its own periodic reference trajectory. By establishing a network topology among systems, we propose a new consensus-based distributed cooperative learning (DCL) law for the unknown weights of radial basis function (RBF) neural networks appearing in output-feedback control laws. The main advantage of such a learning scheme is that all estimated weights converge to a small neighborhood of the optimal value over the union of all system estimated state orbits. Thus, the learned NN weights have better generalization ability than those obtained by traditional NN learning laws. Our control approach also guarantees the convergence of tracking errors and the stability of closed-loop system. Under the assumption that the network topology is undirected and connected, we give a strict proof by verifying the cooperative persisting excitation condition of RBF regression vectors. This condition is defined in our recent work and plays a key role in analyzing the convergence of adaptive parameters. Finally, two simulation examples are provided to verify the effectiveness and advantages of the control scheme proposed in this paper.  相似文献   

9.
This paper presents a control strategy of using cable actuators to control the vibration of a membrane antenna structure. The tension cables of the membrane antenna structure are used as actuators, the vibration of the structure can be suppressed by controlling the tension force in the cable actuators. First, the antenna structure with cable actuators is discretized by the finite element method (FEM), and governing equation of the whole structure is established. Then, a controller is designed based on the Lyapunov's stability theory, and the mechanism of this controller is studied through a simple single-degree-of-freedom (SDOF) system. The optimal placement of the cable actuators is also studied numerically in this paper. Simulation results indicate that vibration of the membrane antenna structure can be suppressed effectively by the cable actuators, and optimally placed cable actuators can produce better control effect with smaller control input.  相似文献   

10.
This paper focuses on the problem of adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Radial basis function neural networks (NNs) are employed to approximate the unknown functions and an NN observer is constructed to estimate the unmeasurable system states. Moreover, an auxiliary system is introduced to compensate for the effect of input delay. With the aid of the backstepping technique and Lyapunov stability theorem, an adaptive NN output feedback controller is designed which can guarantee the boundedness of all the signals in the closed-loop systems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

11.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

12.
In this paper, a coopetitive output regulation problem is considered for general linear multi-agent systems with antagonistic interactions, where not all the agents have access to the state, the output, the system matrix and the output matrix of the exogenous system or exosystem. In this sense, the internal model incorporation of the system matrix of the exosystem is also only available to some agents. Thus, we propose distributed observers for each agent: (i) To estimate the state, the output, the system matrix and the output matrix, and (ii) the unavailable internal model of the exosystem. Then, a distributed dynamic output feedback controller is proposed for each agent to solve the coopetitive output regulation problem. The exponential stability of the closed-loop system is analyzed with the output regulation theory. Finally, some simulation results are presented to validate the proposed control strategy.  相似文献   

13.
In this paper, a multi-model switching control is developed for air-breathing hypersonic vehicle with variable geometry inlet(AHV-VGI). A variable geometry inlet with the translating cowl is adopted to capture the enough air mass flow for the scramjet engine, which can ensure a more powerful thrust. However, the using of VGI causes the unknown changes of the aerodynamics and thrust, making the model of AHV more complex. Therefore, we firstly analyze the thrust characteristic with the translating cowl and present the conception of optimal elongation distance of translating cowl(EDTC). Consequently, multiple different nonlinear aerodynamic models are constructed by curve fitting for each position of the translating cowl. Then, a switching mechanism dependent on EDTC is proposed and the adaptive RBF neural controllers are designed for velocity subsystem and altitude system of every model. Furthermore, the common Lyapunov functional is constructed to prove the stability of the multi-model switching process. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed control approach for AHV-VGI.  相似文献   

14.
This paper is concerned with state feedback stabilization of discrete-time switched singular systems with time-varying delays existing simultaneously in the state, the output and the switching signal of the switched controller. On the basis of equivalent dynamics decomposition and Lyapunov–Krasovskii method, exponential estimates for the response of slow states of the closed-loop subsystems running in asynchronous and synchronous periods are first given. Exponential estimates for the response of fast states are also provided by establishing an analytic equation to solve the fast states and using some algebraic techniques. Then, by employing the obtained exponential estimates and the piecewise Lyapunov function approach with average dwell time (ADT) switching, sufficient conditions for the existence of a class of stabilizing switching signals and state feedback gains are derived, which explicitly depend on upper bounds on the delays and a lower bound on the ADT. Finally, two numerical examples are provided to illustrate the effectiveness of the obtained theoretical results.  相似文献   

15.
This paper investigates spacecraft output feedback attitude control problem based on extended state observer (ESO) and adaptive dynamic programming (ADP) approach. For the plant described by the unit quaternion, an ESO is first presented in view of the property of the attitude motion, and the norm constraint on the unit quaternion can be satisfied theoretically. The practical convergence proof of the developed ESO is illustrated by change of coordinates. Then, the controller is designed with an involvement of two parts: the basic part and the supplementary part. For the basic part, a proportional-derivative control law is designed. For the supplementary part, an ADP method called action-dependent heuristic dynamic programming (ADHDP) is adopted, which provides a supplementary control action according to the differences between the actual and the desired system signals. Simulation studies validate the effectiveness of the proposed scheme.  相似文献   

16.
This paper investigates the problem of stabilization for fuzzy sampled-data systems with variable sampling. A novel Lyapunov–Krasovskii functional (LKF) is introduced to the fuzzy systems. The benefit of the new approach is that the LKF develops more information about actual sampling pattern of the fuzzy sampled-data systems. In addition, some symmetric matrices involved in the LKF are not required to be positive definite. Based on a recently introduced Wirtinger-based integral inequality that has been shown to be less conservative than Jensen’s inequality, much less conservative stabilization conditions are obtained. Then, the corresponding sampled-data controller can be synthesized by solving a set of linear matrix inequalities (LMIs). Finally, an illustrative example is given to show the feasibility and effectiveness of the proposed method.  相似文献   

17.
This paper dedicates to dealing with the adaptive neural design problem for uncertain stochastic nonlinear systems with non-lower triangular pure-feedback form and input constraint. On the basis of the mean-value theorem, the pure-feedback structure is first transformed into the desired affine structure, and then the well-known backstepping technology is applied to construct the actual input signal of the controller. Although the considered system has a fairly complex structure, a new adaptive neural tracking controller design frame is established via the flexible application of radial basis function (RBF) neural networks’ (NNs’) structural characteristics. The proposed design frame guarantees the control objective of this paper can be achieved. Finally, a simulation example is given to further illustrate the availability of the proposed control scheme.  相似文献   

18.
Auto-Regressive-Moving-Average with eXogenous input (ARMAX) models play an important role in control engineering for describing practical systems. However, ARMAX models can be non-realistic in many practical contexts because they do not consider the measurement errors on the output of the process. Due to the auto-regressive nature of ARMAX processes, a measurement error may affect multiple data entries, making the estimation problem very challenging. This problem can be solved by enhancing the ARMAX model with additive error terms on the output, and this paper develops a moving horizon estimator for such an extended ARMAX model. In the proposed method, measurement errors are modeled as nuisance variables and estimated simultaneously with the states. Identifiability was achieved by regularizing the least-squares cost with the ?2-norm of the nuisance variables, which leads to an optimization problem that has an analytical solution. For the proposed estimator, convergence results are established and unbiasedness properties are also proved. Insights on how to select the tuning parameter in the cost function are provided. Because of the explicit modeling of output noise, the impact of a measurement error on multiple data entries can be estimated and reduced. Examples are given to demonstrate the effectiveness of the proposed estimator in dealing with additive output noise as well as outliers.  相似文献   

19.
Constrained control for stochastic linear systems is generally a difficult task due to the possible infeasibility of state constraints. In this paper, we focus on a finite control horizon and propose a design methodology where the constrained control problem is formulated as a chance-constrained optimization problem depending on some parameter. This parameter can be tuned so as to decide the appropriate trade-off between control cost minimization and state constraints satisfaction. An approximate solution is computed via a randomized algorithm. Precise guarantees about its feasibility for the original chance-constrained problem are provided. A numerical example shows the efficacy of the proposed methodology.  相似文献   

20.
This paper studies the static output-feedback control in a class of networked control systems. Different from the existing results, the transmission of control signals is based on a novel adaptive event-triggered scheme, where the adaptive thresholds depend on the dynamic error of the system rather than predetermined constants as the traditional ones. The amount of the releasing data is regulated by the adaptive thresholds that play an essential role in decision of whether releasing the sampled data or not. Through fully using the information on network-induced delay and introducing two adjusting parameters, an augmented Lyapunov–Krasovskii (L–K) functional is constructed. Especially, some novel Wirtinger-based integral inequalities are utilized to reconsider those previously ignored information, which can help reduce the conservatism. Furthermore, a novel constructive method is developed to obtain the controller gain by solving the achieved linear matrix inequalities (LMIs). Finally, three numerical examples are given to illustrate the efficiency of the presented results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号