首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In classical model reference adaptive control (MRAC), the adaptive rates must be tuned to meet multiple competing objectives. Large adaptive rates guarantee rapid convergence of the trajectory tracking error to zero. However, large adaptive rates may also induce saturation of the actuators and excessive overshoots of the closed-loop system’s trajectory tracking error. Conversely, low adaptive rates may produce unsatisfactory trajectory tracking performances. To overcome these limitations, in the classical MRAC framework, the adaptive rates must be tuned through an iterative process. Alternative approaches require to modify the plant’s reference model or the reference command input. This paper presents the first MRAC laws for nonlinear dynamical systems affected by matched and parametric uncertainties that constrain both the closed-loop system’s trajectory tracking error and the control input at all times within user-defined bounds, and enforce a user-defined rate of convergence on the trajectory tracking error. By applying the proposed MRAC laws, the adaptive rates can be set arbitrarily large and both the plant’s reference model and the reference command input can be chosen arbitrarily. The user-defined rate of convergence of the closed-loop plant’s trajectory is enforced by introducing a user-defined auxiliary reference model, which converges to the trajectory tracking error obtained by applying the classical MRAC laws before its transient dynamics has decayed, and steering the trajectory tracking error to the auxiliary reference model at a rate of convergence that is higher than the rate of convergence of the plant’s reference model. The ability of the proposed MRAC laws to prescribe the performance of the closed-loop system’s trajectory tracking error and control input is guaranteed by barrier Lyapunov functions. Numerical simulations illustrate both the applicability of our theoretical results and their effectiveness compared to other techniques such as prescribed performance control, which allows to constrain both the rate of convergence and the maximum overshoot on the trajectory tracking error of uncertain systems.  相似文献   

2.
In this paper, we develop a unified framework to find state-feedback control laws that solve two-player zero-sum differential games over the infinite time horizon and guarantee partial-state asymptotic stability of the closed-loop system. Partial-state asymptotic stability is guaranteed by means of a Lyapunov function that is positive definite and decrescent with respect to part of the system state. The existence of a saddle point for the system?s performance measure is guaranteed by the fact that this Lyapunov function satisfies a partial differential equation that corresponds to a steady-state form of the Hamilton–Jacobi–Isaacs equation. In the second part of this paper, we show how our differential game framework can be applied not only to solve pursuit-evasion and robust optimal control problems, but also to assess the effectiveness of a model reference adaptive control law. Specifically, the model reference adaptive control architecture is designed to guarantee satisfactory trajectory tracking for uncertain nonlinear dynamical systems, whose matched nonlinearities are captured by the regressor vector. By modeling matched and unmatched nonlinearities, which are not captured by the regressor vector, as the pursuer?s and evader?s control inputs in a differential game, we provide an explicit characterization of the system?s uncertainties that do not disrupt the trajectory tracking capabilities of the adaptive controller. Two numerical examples illustrate the applicability of our results.  相似文献   

3.
In this paper, a compound control strategy is proposed to realize the trajectory tracking task of quadrotors under operating constraints and disturbances. Disturbances caused by model uncertainties, environmental noises, and measurement disturbances are divided into matched disturbances and unmatched ones, which are compensated and suppressed separately by using two control components. The integral sliding mode control component is designed to actively reject the matched disturbances, and the control system is then transformed into an equivalent control system subject to equivalent disturbances only related to the unmatched disturbances. The remaining equivalent disturbances are treated by a robust model predictive control component based on the idea of constraints tightening, which minimizes the tracking error in an optimization framework and takes both state and input constraints into account explicitly. The derived compound control strategy is based on these two control components. Conditions are provided to guarantee the robust constraint satisfaction, recursive feasibility and closed-loop stability of the tracking error system. An illustrative example on the quadrotors shows the efficiency and robustness of this compound tracking control algorithm.  相似文献   

4.
5.
This paper presents a novel integrated guidance and control strategy for homing of unmanned underwater vehicles (UUVs) in 5-degree-of-freedom (DOF), where the vehicles are assumed to be underactuated at high speed and required to move towards the final docking path. During the initial homing stage, the guidance system is first designed by geometrical analysis method to generate a feasible reference trajectory. Then, in the backstepping framework, the proposed trajectory tracking controller can achieve all the tracking errors in the closed-loop system convergence to a small neighbourhood of zero. It means that the vehicle's dynamics are consistent with the reference trajectory derived in the previous step. To demonstrate the effectiveness of the proposed guidance and control strategy, the complete stability analysis used Lyapunov's method is given in the paper, and simulation results of all initial conditions are presented and discussed.  相似文献   

6.
In this paper, we propose a feedback-based control approach to execute the time optimal motion trajectories for a differential drive robot. These trajectories are composed of straight lines and rotations in place. We show that the evolution of the position of a single landmark over time, in a local reference frame, makes it possible to track a prescribed time-optimal robot’s trajectory, based on feedback of the landmark’s position. We also show that the closed-loop system is an exponentially stable one with a nonvanishing perturbation, and that globally uniformly ultimately boundedness of the tracking errors can be achieved. The two main results of this work are: 1) Our approach leverages visual servo control type of methods with tools from optimal control for executing time-optimal trajectories in the state space based on feedback information. 2) The approach is able to work with the minimum number of landmarks–only one–this represents a necessary and sufficientcondition for landmark-based navigation. Experiments in a physical robot, a nonholonomic differential drive system equipped with an omnidirectional laser sensor, are shown, which validate the proposed theoretical modelling.  相似文献   

7.
This paper concerns the indefinite linear quadratic (LQ) optimal control problem for discrete-time singular Markov jump systems (MJSs) with finite and infinite horizon, where the weight matrices for state and control of cost function are all indefinite. Firstly, the indefinite LQ problem for singular MJSs is equivalently transformed into indefinite LQ problem for MJSs under a series of equivalent transformations. Then, the sufficient and necessary condition is proposed for the solvability of finite horizon case, the optimal control and optimal cost value are given, and the resulting optimal closed-loop system is regular, casual. Next, some sufficient and necessary conditions are obtained to ensure the transformed equivalent LQ problem for MJSs to be definite one, which can guarantee the generalized algebraic Riccati equation with Markov jump has a unique semi-positive definite solution. Meanwhile, the optimal control and nonnegative optimal cost value in infinite horizon are acquired, and the resulting optimal closed-loop system is stochastically admissible. Finally, three examples are presented to illustrate the theoretical results.  相似文献   

8.
In this paper, the trajectory tracking control problem of a six-degree of freedom (6-DOF) quadrotor unmanned aerial vehicle (UAV) with input saturation is studied. Applying a hierarchical control structure, a priori-bounded control thrust and the desired orientations are derived to stabilize the translational subsystem without singularities. By using a backstepping approach with a Nussbaum function, a priori-bounded control torque for the rotational subsystem is designed to track the desired orientations generated by the translational subsystem. With the proposed control scheme, the latent singularities in the attitude extraction process caused by saturation nonlinearities are avoided, and globally uniformly ultimately bounded (UUB) stability of the closed-loop system is achieved. The tracking error bound is further determined which can be made arbitrarily small by tuning certain control gains. Numerical simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

9.
This paper investigates the robust output regulation problem for stochastic systems with additive noises. As is known, for the output regulation control problem, a general method is to regard that the system is disturbed by an autonomous exosystem (which is consisted by external disturbances and reference signals), and for the system disturbed by the white noise, the stochastic differential equations (SDEs) should be utilized in modeling, accordingly, a controller with a feedforward regulator is constructed for the stochastic system with an exosystem, which can not only cancel the external disturbance, but also transform the trajectory tracking problem into the stabilization problem; In consideration of the state variables in stochastic systems cannot be measured completely, we embed an observer to the controller, such that the random interference can be suppressed, and the trajectory tracking can be achieved. Based on the stochastic control theory, the criteria of the exponential practical stability in the mean square is presented for the closed-loop system, finally, through tuning the controller parameters, the mean square of the tracking error can converge to an arbitrarily small neighborhood of the origin.  相似文献   

10.
Gas flow has fractional order dynamics; therefore, it is reasonable to assume that the pneumatic systems with a proportional valve to regulate gas flow have fractional order dynamics as well. There is a hypothesis that the fractional order control has better control performance for this inherent fractional order system, although the model used for fractional controller design is integer order. To test this hypothesis, a fractional order sliding mode controller is proposed to control the pneumatic position servo system, which is based on the exponential reaching law. In this method, the fractional order derivative is introduced into the sliding mode surface. The stability of the controller is proven using Lyapunov theorem. Since the pressure sensor is not required, the control system configuration is simple and inexpensive. The experimental results presented indicate the proposed method has better control performance than the fractional order proportional integral derivative (FPID) controller and some conventional integral order control methods. Points to be noticed here are that the fractional order sliding mode control is superior to the integral order sliding mode counterpart, and the FPID is superior to the corresponding integral order PID, both with optimal parameters. Among all the methods compared, the proposed method achieves the highest tracking accuracy. Moreover, the proposed controller has less chattering in the manipulated variable, the energy consumption of the controller is therefore substantially reduced.  相似文献   

11.
In this paper, a novel composite controller is proposed to achieve the prescribed performance of completely tracking errors for a class of uncertain nonlinear systems. The proposed controller contains a feedforward controller and a feedback controller. The feedforward controller is constructed by incorporating the prescribed performance function (PPF) and a state predictor into the neural dynamic surface approach to guarantee the transient and steady-state responses of completely tracking errors within prescribed boundaries. Different from the traditional adaptive laws which are commonly updated by the system tracking error, the state predictor uses the prediction error to update the neural network (NN) weights such that a smooth and fast approximation for the unknown nonlinearity can be obtained without incurring high-frequency oscillations. Since the uncertainties existing in the system may influence the prescribed performance of tracking error and the estimation accuracy of NN, an optimal robust guaranteed cost control (ORGCC) is designed as the feedback controller to make the closed-loop system robustly stable and further guarantee that the system cost function is not more than a specified upper bound. The stabilities of the whole closed-loop control system is certified by the Lyapunov theory. Simulation and experimental results based on a servomechanism are conducted to demonstrate the effectiveness of the proposed method.  相似文献   

12.
This paper deals with the fault tolerant control (FTC) design for a Vertical Takeoff and Landing (VTOL) aircraft subject to external disturbances and actuator faults. The aim is to synthesize a fault tolerant controller ensuring trajectory tracking for the nonlinear uncertain system represented by a Takagi–Sugeno (T–S) model. In order to design the FTC law, a proportional integral observer (PIO) is adopted which estimate both of the faults and the faulty system states. Based on the Lyapunov theory and ?2 optimization, the trajectory tracking performance and the stability of the closed loop system are analyzed. Sufficient conditions are obtained in terms of linear matrix inequalities (LMI). Simulation results show that the proposed controller is robust with respect to uncertainties on the mechanical parameters that characterize the model and secures global convergence.  相似文献   

13.
This paper investigates an adaptive prescribed performance control strategy with specific time planning for trajectory tracking of robotic manipulator subject to input constraint and external disturbances. By constructing an accumulated error vector embedded with a performance enhancement function and introducing an input auxiliary function, a specified-time control framework with built-in prescribed performance is further designed to ensure that the trajectory tracking performance. More particularly, the proposed control law is compatible with the control input saturation suppression algorithm, which is capable of improving the robustness of closed loop system. Under the framework of the proposed control strategy, it is proved by theory that all the signals in the closed-loop system are bounded, and moreover the tracking error can reach the exact convergence domain in a given time. At last, a numerical example is presented to indicate the feasibility and effectiveness of the proposed method.  相似文献   

14.
In this paper, the finite horizon tracking control problem of probabilistic Boolean control networks (PBCNs) is studied. For a given reference output trajectory, two trackability definitions are introduced according to whether the tracking probability is 1. Under the framework of the semi-tensor product, some necessary and sufficient conditions are obtained to determine whether the reference output trajectory is trackable with probability (probability one) by a PBCN starting from a given initial state. Based on this, two algorithms are proposed to determine the maximum tracking probability and the corresponding optimal control policy sequence. By determining the tracking error of the reference output trajectory, two related optimal control problems are considered: one is to minimize the expected value of the total tracking error, and the other is to minimize the maximum tracking error. Inspired by dynamic programming, corresponding algorithms are given to solve these two problems. Finally, two examples are given to verify the validity and correctness of the results.  相似文献   

15.
In this paper, the subspace identification based robust fault prediction method which combines optimal track control with adaptive neural network compensation is presented for prediction the fault of unknown nonlinear system. At first, the local approximate linear model based on input-output of unknown system is obtained by subspace identification. The optimal track control is adopted for the approximate model with some unknown uncertainties and external disturbances. An adaptive RBF neural network is added to the track control in order to guarantee the robust tracking ability of the observation system. The effect of the system nonlinearity and the error caused by subspace modeling can be overcome by adaptive tuning of the weights of the RBF neural network online without any requisition of constraint or matching conditions. The stability of the designed closed-loop system is thus proved. A density function estimation method based on state forecasting is then used to judge the fault. The proposed method is applied to fault prediction of model-unknown fighter F-8II of China airforce and the simulation results show that the proposed method can not only predict the fault, but has strong robustness against uncertainties and external disturbances.  相似文献   

16.
This paper focuses on the optimal tracking control problem (OTCP) for the unknown multi-input system by using a reinforcement learning (RL) scheme and nonzero-sum (NZS) game theory. First, a generic method for the OTCP of multi-input systems is formulated with steady-state controls and optimal feedback controls based on the NZS game theory. Then a three-layer neural network (NN) identifier is introduced to approximate the unknown system, and the input dynamics are obtained by using the derivative of the identifier. To transform the OTCP into a regulation optimal problem, an augmentation of the multi-input system is constructed by using the tracking error and the commanded trajectory. Moreover, we use an NN-based RL method to online learn the optimal value functions of all the inputs, which are then directly used to calculate the optimal tracking controls. All the NN weights are tuned synchronously online with a newly introduced adaptation based on the estimation error. The convergence of the NN weights and the stability of the closed-loop system are analyzed. Finally, a two-motor driven servo system and another nonlinear system are presented to illustrate the feasibility of the algorithm for both linear and nonlinear multi-input systems.  相似文献   

17.
A novel robust hierarchical multi-loop composite control scheme is proposed for the trajectory tracking control of robotic manipulators subject to constraints and disturbances. The inner loop based on inverse dynamics control is used to reduce the nonlinear tracking error system to a set of decoupled linear subsystems to alleviate the computational effort during the sequel optimization. The feasible regions of the equivalent state and control input of each subsystem can be computed efficiently by choosing an appropriate inertia matrix estimate. The external loop, relying on a set of separate disturbance-observer-based tube model predictive composite controllers, is used to robustly stabilize the decoupled subsystems. In particular, the disturbance observers are designed to compensate for the disturbances actively, while the tube model predictive controllers are used to reject the residual disturbances. The robust tightened constraints are obtained by calculating the outer-bounding-tube-type residual disturbance invariant sets of the closed-loop subsystems. Furthermore, the recursive feasibility and input-to-state stability of the closed-loop system are investigated. The effectiveness of the proposed control scheme is verified by the simulation experiment on a PUMA 560 robotic manipulator.  相似文献   

18.
This paper focuses on the distributed fuzzy learning sliding mode cooperative control issue for non-affine nonlinear multi-missile guidance systems. The dynamics of each follower is non-affine form with unknown lumped factor. To estimate the unknown lumped factor, a generalized fuzzy hyperbolic model (GFHM) based prescribed performance observer (PPO) is proposed. Different from the traditional disturbance observers, a residual set of error transient behavior is incorporated additionally so that the peak phenomenon can be avoided. Meanwhile, an auxiliary system is employed to convert the system of each follower to augmented affine form. Then, a distributed fuzzy learning sliding mode cooperative control approach is designed which consists of two parts. The adaptive sliding mode control (SMC) part is designed to force the states to move along the predefined integral sliding surface. For the equivalent sliding dynamics, the distributed optimal control part with GFHM is developed to minimize the cooperative performance function. Thus, the stability and the optimality of the closed-loop system are guaranteed synchronously. Finally, all signals of closed-loop system are rigorously proved bounded and the multi-missile cooperative guidance scenario is applied to verify the effectiveness of proposed method.  相似文献   

19.
An adaptive backstepping control scheme is proposed for task-space trajectory tracking of robot manipulators in the presence of uncertain parameters and external disturbances. In the case of external disturbance-free, the developed controller guarantees that the desired trajectory is globally asymptotically followed. Moreover, taking disturbances into consideration, the controller is synthesized by using adaptive technique to estimate the system uncertainties. It is shown that L2 gain of the closed-loop system is allowed to be chosen arbitrarily small so as to achieve any level of L2 disturbance attenuation. The associated stability proof is constructive and accomplished by the development of a Lyapunov function candidate. Numerical simulation results are included to verify the control performance of the control approach derived.  相似文献   

20.
For a class of flexible joint manipulators actuated by DC-motors, the problem of modeling and trajectory tracking control under random disturbances is considered in this paper. How to describe random disturbances and introduce them to the system is the key for modeling and control. According to the relative motion and the equivalent circuit, the effect of random disturbances can be regarded as torque or voltage disturbed by colored noises. Thus, a random model is constructed. By using the vectorial backstepping and the technique of separating out the noise from coupled terms, a state feedback tracking controller is designed such that the state of closed-loop system has an asymptotic gain in the 2nd moment and the mean square of tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The effectiveness of the proposed scheme is demonstrated by the simulation results for a two-link robot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号