首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
下面举例说明圆幂定理在几何证题中的常见应用 .一、证明两条线段相等例 1 如图 1 ,已知AD、BE、CF分别是△ABC三边上的高 ,H是垂心 ,AD的延长线交△ABC的外接圆于点G .求证 :DH =DG .( 1 997年甘肃省中考题 )分析 由相交弦定理有DG·DA =BD·DC ,即DG =BD·DCDA .从而 ,欲证DH =DG ,只须证DH =BD·DCDA .为此 ,只须证△ABD∽△CHD .证明 如图 1 ,由已知有∠ 1 ∠ 3=90°,∠ 2 ∠ 4 =90°.∵ ∠ 3=∠ 4 ,∴ ∠ 1 =∠ 2 .∵ ∠ADB =∠CDH =90°,∴ △ABD∽△CHD…  相似文献   

2.
圆中同一条直线上的四条线段成比例问题是常见的题型之一 ,解题思路是通过转化 ,运用相似形或圆中有关定理加以解决 .1 利用相似形例 1 如图 1 ,圆内两弦AB与AC的夹角为60°,E、F分别为AB、AC的中点 ,EF分别交AB、AC于G、H ,求证 :GH2 =GE·HF .分析 将乘积转化为比例式 GEGH =GHHF,则只须证△AGE∽△FHA和△AGH为正三角形即可 .证明 因为∠BAC =60°,所以BC =1 2 0°,BAC=2 4 0°.又E、F分别为AB和AC中点 .所以∠ 2 =∠ 4 ,∠ 1 =∠F .∠ 3=∠ 1 ∠ 2 ,∠AHG =∠ 4 ∠F …  相似文献   

3.
给定△ABC和一点P ,满足∠QAC =∠PAB ,∠QBA =∠PBC ,∠QCB =∠PCA的点 (如图 )Q叫做P关于△ABC的等角共轭点[1] [2 ] .我们发现了等角共轭点的一条新性质 :定理 设P、Q是△ABC的等角共轭点 ,则AP·AQAB·AC BP·BQBC·BA CP·CQCA·CB=1 .证明 :如图 ,在射线AQ上取点D ,使∠ACD =∠APB ,因∠APB >∠ACB ,故D在△ABC外 .又因∠PAB =∠CAD ,从而△ABP∽△ADC ,故ABAD=APAC=BPCD,CD =BP·ACAP .①又由∠QAB =∠PAC ,A…  相似文献   

4.
我们知道 ,两圆相内切或外切时 ,只有一个公共点 .这时 ,如果过切点作出两圆的公切线 ,构造弦切角 ,从而架设两圆之间的桥梁 ,往往会使问题得到解决 .一、证明两角互补例 1 已知 :两圆外切于点P ,一条割线分别交两圆于A、B、C、D .求证 :∠APD +∠BPC=1 80°.分析 如图 1 ,要证明结论成立 ,只需证∠BPC =∠A +∠D .这时想到过点P作两圆的公切线交AD于点E ,构造出两个弦切角 :∠EPB和∠EPC .从而只需证∠EPB =∠A,∠EPC =∠D .这由弦切角定理可得 .图 1         图 2二、证明两角相等例 2 如…  相似文献   

5.
1 分析法分析法就是从题目的结论出发 ,逐步找出使结论成立的原因 ,直到找出所用的原因恰好是题目的已知条件或所学过的定理 ,再按分析的思路从后往前把证题过程写出来 .图 1例 1 如图 1 ,△ABC中 ,∠A的平分线AD交BC于D ,⊙O过点A且与BC相切于D ,与AB、AC分别相交于E、F ,AD与EF相交于G .求证 :AF·FC =GF·DC .( 2 0 0 1 ,河南省中考题 )证题思路 :AF·FC =GF·DC AFDC=GFFC △DCF∽AFG(连结DF) ∠CDF =∠FAD∠C =∠AFG EF∥BC ∠EFD =∠CDF ∠EFD =…  相似文献   

6.
在初中数学中有关圆的定理和性质很多 ,作为一线的教师都会发现还有一类问题的解决要费一番周折 ,本人发现解决此类问题可以用一个结论 ,这样基础不好的同学也会很好的得到正确的答案 .下面列举的就是该结论及相关的运用 .图 1       图 2如图 1,在圆O内 ,A ,B ,C是圆上的三点 ,连接AB并延长 ,D是延长线上的一点 ,则有结论是 :∠A+∠C =∠ABC或∠A +∠C +∠CBD =180° ,∠AOC =2∠CBD .如图 2 ,在圆上找一点E使与B在线段AC的异侧证明 因为∠AEC =∠CBD ,∠AOC =2∠AEC ,所以∠AOC =2∠C…  相似文献   

7.
对任一个三角形 ,有内角平分线定理 :定理 1 在△ABC中 ,∠A的平分线BD交BC于D ,则BDDC=ABAC。对BC上的任一点D (如右图 ) ,因为△ABD与△ADC同高 ,所以 BDDC=S△ABDS△ADC=12 AB·AD·sin∠BAD12 AD·ACsin∠DAC=ABsin∠BADACsin∠DAC。于是 ,有 :定理 2 若D是△ABC的BC内的一点 ,则BDDC=ABsin∠BADACsin∠DAC。显然 ,当∠BAD =∠DAC时 ,定理 2转化为定理1 ,所以说定理 2是内角平分线定理的推广。事实上 ,当D为线段BC的…  相似文献   

8.
等腰三角形是特殊的三角形 ,在解 (证 )题时 ,若能根据已知和图形特点 ,巧妙地构造等腰三角形 ,利用等腰三角形的性质来解决问题 ,将会取得事半功倍的效果 .  一、由“线段的和差”构造等腰三角形例 1 如图 1 ,在△ABC中 ,AD平分∠BAC ,AB +BD =AC .求∠B∶∠C的值 . 解 延长AB至E ,使BE =BD ,连结DE ,则△BED是等腰三角形 .∴ AC =AB +BD =AB +BE =AE .∴ △ADE≌△ADC .∴ ∠E =∠C .∵ ∠ABC =2∠E ,∴ ∠ABC =2∠C ,即∠ABC∶∠C =2∶1 .图 1图 2  二、由“二…  相似文献   

9.
师 :请同学们说一说 ,到目前为止我们一共掌握了哪几种全等三角形的判定方法 ?  生 :……  师 :请大家完成下列练习 :(投影 )  选择题 :△ABC与△A′B′C′全等的条件是 (   )   ( 1)AB =A′B′ ,∠A =∠A′ ,∠B =∠C′   ( 2 )∠A =∠A′ ,AC =A′C′ ,∠C =∠C′   ( 3 )∠A =∠A′ ,∠B =∠B′ ,∠C =∠C′   ( 4 )AB =A′B′ ,∠A =∠A′ ,AC =A′C′  学生完成练习后举手回答并阐述理由。  师 :由上述条件 ( 4 ) ,如果缺少条件∠A =∠A′ ,△∠ABC与△A′B′C还全…  相似文献   

10.
证明三角形全等一般有下面三种思路.一、两个三角形中,已知两边对应相等,需证出它们的夹角对应相等,或者第三边对应相等.例1已知:如图1,B为AC的中点,BE=BD,∠1=∠2.求证;∠A=∠C.分析显然需证△ABE≌△CBD,已有AB=BC,BE=BD,还需要证明它们的夹角∠ABE=∠CBD,而∠1=∠2,它们的夹角相等是显然的.证明∠1=∠2(已知),∠1+∠3=∠2+∠3(等式性质),即∠ABE=∠CBD.在△ABE和△CBD中,AB=BC,BE=BD,∠ABE=∠CBD,△ABE≌△CBD(SAS…  相似文献   

11.
一、设凸四边形ABCD的两组对边所在的直线分别交于E、F两点 ,两对角线的交点为P ,过P作PO⊥EF于O .求证 :∠BOC =∠AOD .图 1解 :如图 1,只需证明OP既是∠AOC的平分线 ,也是∠DOB的平分线即可 .不妨设AC交EF于Q ,考虑△AEC和点F ,由塞瓦定理可得EBBA·AQQC·CDDE=1.①  再考虑△AEC与截线BPD ,由梅涅劳斯定理有EDDC·CPPA·ABBE=1.②  比较①、②两式可得APAQ=PCQC.③过P作EF的平行线分别交OA、OC于I、J ,则有PIQO=APAQ,JPQO=PCQC…  相似文献   

12.
对于某些几何证明问题 ,同学们可以从线段垂直平分线入手 ,常可找到解决问题的捷径。一、直接利用已知的线段垂直平分线图 1.例 1 如图 1,AD平分∠BAC ,EF是AD的垂直平分线交AD于E ,交BC的延长线于F ,连AF ,求证 :∠B =∠CAF证明 :∵EF是AD的垂直平分线∴FA =FD ∠FDE =∠FAE∴∠B +∠ 1=∠CAF +∠ 2∵∠ 1=∠ 2∴∠B =∠CAF .二、挖掘利用隐含的线段垂直平分线例 2 如图 2 ,△ABC中 ,AD平分∠BAC ,CE⊥AD于O ,CE是∠DEF的平分线 ,求证EF∥BC .图 2证明 :在△AEO和…  相似文献   

13.
本刊 2 0 0 1年第 1~ 2合期刊登了吴家驷先生“十五点共圆”一文 ,证明了有 1 2个特殊点在三角形外接圆上 .事实上还有 6个点 ,合为 2 1点共圆 .定理 不等边三角形的每个顶点的内外角平分线与对边中垂线的两个交点 ,在其外接圆上 .证明 : 如图 ,PQ为△ABC的边AC的中垂线 ,BP平分∠DBC ,BQ平分∠ABC ,作PM⊥BD ,垂足为M ,PN⊥BC ,垂足为N ,QE⊥BA ,垂足为E ,QF⊥BC ,垂足为F ,易知QA =QC ,QE =QF ,Rt△QEA≌Rt△QFC ,∠EAQ =∠QCF ,A、B、C、Q共圆 ,即Q在△ABC的外…  相似文献   

14.
老师常常会告诫同学们:不能盲目做题!这就需要分析题意,在做几何证明题时,往往可以有多种证题途径,最有效的一条途径往往是条件结论一起考虑,我们首先考虑条件能向结论提供什么有效信息,而后考虑结论需要条件提供什么有效信息.这也就是通常说的“两头凑”的分析方法.例1如图1,已知∠1=∠2,∠C=∠D.求证:∠A=∠F.图1分析欲证∠A=∠F,只需证AC∥DF.从而可转化为证∠C=∠CEF,而由已知∠C=∠D,故只需证∠D=∠CEF,从而需证BD∥CE.证明因为∠1=∠2,∠2=∠3,所以∠1=∠3,所以BD∥CE,所以∠D=∠CEF.又∠C=∠D,所以∠C=∠CEF,所以AC…  相似文献   

15.
《中学数学教学参考》1 999年第 1 2期第 1 8页之例 3,是一道几何证明题范例 ,但原文是利用很复杂的三角恒等式来解决的 .下面给出该例题之简短几何证明 ,供读者参考 .原题 已知ABCD是正方形(图 1 ) ,在BC边上任取一点E ,又AF平分∠DAE交CD于F .求证 :AE =BE DF .几何证法 :以A为轴心 ,将△ADF旋转 90°到△ABG的位置(图 2 ) .显然 ,G点在CB的延长线上 .设∠DAF =α ,则∠DFA =90° -α ,且∠FAE=α .但∠FAG =90°,故∠EAG=90° -α .而∠BGA =∠DFA ,因此∠BGA =∠EAG ,所以…  相似文献   

16.
液体表面张力的作用效果 ,使液体的表面积收缩最小 .用正方体铁丝架拉出的肥皂膜并不是正立方六面体 ,而是如图 1所示的肥皂膜形状 ,怎样从表面张力使表面积最小的结论 ,去解释这个现象呢 ?先介绍预备定理 .①定理 1 :在三角形内一点与三个顶点的连线 ,若两两夹角为 1 2 0°,那么该点与三个顶点所连线段之和最短 .该点称为费马点 .图 1          图 2设P为△ABC内一点 ,若∠APB =∠BPC =∠CPA =1 2 0° ,那么AP +BP +CP最小 .分析 :连接PA、BP、CP ,将△ACP绕A点逆时针旋转 60°到△AC′P′处如…  相似文献   

17.
题目 如图 1 ,已知四边形ABCD外接圆⊙O的半径为 2 ,对角线AC与BD的交点为E ,AE =EC ,AB =2AE ,BD =2 3.求四边形ABCD的面积 .( 2 0 0 0年全国初三数学竞赛题 )这是一道综合性与技巧性都较强的试题 ,解题的思路开阔 ,方法较多 .图 1图 2  解法一 如图 2 ,∵ AB =2AE ,AE =EC ,∴ AB2 =2AE2 =AE·2AE =AE·AC .∴  ABAC =AEAB.又∠BAE =∠CAB ,∴ △ABE∽△ACB .∴ ∠ABE =∠ACB .∵ ∠ACB =∠ADB ,∴ ∠ABE =∠ADB .∴ AB =AD .作直径…  相似文献   

18.
1 题目与解法研究2 0 0 0年高考理 18(文 19)题 :如图 1,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形 ,且∠C1CB =∠C1CD =∠BCD =60°.(Ⅰ )证明 :CC1⊥BD ;(Ⅱ )假定CD =2 ,CC1=32 ,记面C1BD为α ,面CBD为 β ,求二面角α -BD - β的平面角的余弦值 ;(Ⅲ )当 CDCC1的值为多少时 ,能使A1C⊥平面C1BD ?请给出证明 .图  1(Ⅰ )证 1 连结AC与BD交于O ,连结A1C1、C1O .由四边形ABCD是菱形 ,知AC⊥BD ,BC =CD .∵∠BCC1=∠DCC1,∴△C1BC≌△C1DC ,有C1…  相似文献   

19.
一、添加条件型这类题的特点是要使某一结论成立 ,需要添加给定个数的条件 ,往往所要添的条件不惟一 ,可在多个中选择 .图 1例 1 如图 1,∠ 1=∠ 2 ,BC =EF ,那么需要补充一个直接条件 (写出一个即可 ) ,才能使△ABC≌△DEF .(2 0 0 1年吉林省中考题 )分析 补充AC =DF即可 .从而由BC =EF ,∠ 1=∠ 2 ,根据“SAS”可证得△ABC≌△DEF .说明 还可添加∠A =∠D或∠B =∠E .二、方案设计型这类题的特点是打破教材中“标准的封闭型数学题”的框框 ,要求根据题目条件自己拿出方案 ,往往方案不止一个 ,有时还要…  相似文献   

20.
折叠题是近年来各省市中考命题的热点 ,这类题的特点是基础性强 ,重在考察同学们的动手操作能力和分析、推理能力以及书面表达能力等 ,在解题过程中 ,如能根据题目自身的特点和已学过的知识 ,进行分类型解答 ,就可以化难为易 ,思路清晰 ,方法简捷 ,现举例如下 :一、对角线折叠法例 1 把一张对边平行的纸条像图中那样折叠 ,重合部分是一个等腰三角形吗 ?为什么 ?(教材《几何》第二册P78练习 1 )证明 :∵折叠后∠ 1和∠ 2重合 ∴∠ 1 =∠ 2又∵DC∥AB ∴∠ 2 =∠ 3∴∠ 1 =∠ 3 ∴△ACE是等腰三角形例 2 如图 ,将矩形纸片ABC…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号