首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
简要介绍了用原位聚合合成PET及PET/SiO2纳米复合材料的方法,并对合成材料的力学性能和摩擦性能进行了研究.研究表明:PET/SiO2纳米复合材料的拉伸强度、冲击强度、弯曲强度等较纯PET有较大提高.当SiO2含量为2%时,复合材料的拉伸强度、弯曲强度分别比纯PET提高26.4%、25.2%,当SiO2用量为1%时,其冲击强度是纯PET的1.31倍.PET/SiO2纳米复合材料比纯PET具有较好的耐磨性.  相似文献   

2.
针对 Al Fe2 O3燃烧体系,选取纳米 SiO2、Na2B4O7为添加剂,采用离心自蔓延高温合成技术制备出陶瓷内衬复合钢管。在 Na2B4O7质量分数为4%的条件下,研究了纳米 SiO2对陶瓷内衬复合钢管致密度以及耐腐蚀性能的影响。结果表明:当纳米 SiO2添加量为6%时,复合钢管陶瓷层致密度最好,当纳米 SiO2添加量为4%时,耐腐蚀性最好。  相似文献   

3.
以俄罗斯生产的纳米金刚石为改性剂,采用熔体共混法制备了纳米金刚石/CaCO3/聚丙烯树脂(PP)复合材料,探讨了纳米复合材料的分散工艺及不同纳米金刚石含量对复合材料力学性能的影响.实验结果表明:适量添加纳米金刚石可提高PP复合材料各种力学性能;纳米金刚石用量(质量分数)为4%时,PP复合材料抗压强度达34.431 MPa,比纯PP复合材料提高20%,冲击强度提高66%,抗拉强度提高39%.  相似文献   

4.
流延法制备了甘油增塑的壳聚糖/纳米淀粉复合材料。采用傅里叶红外(FT—IR)、X-衍射(XRD)、热重分析(TGA)、扫描电镜(SEM)和力学性能测试研究了纳米淀粉对复合材料的结构和性能的影响。结果表明,当纳米淀粉含量小于3wt%时,随着纳米淀粉在复合材料中的含量增加,复合膜的热稳定性增加、拉伸强度由52.59MPa增加到61.13MPa。  相似文献   

5.
采用甲基丙烯酸甲酯(MMA)与PP接枝共聚物(PP-g-MMA)为界面相容剂,在熔融共混的条件下;利用螺杆挤出机制备PP/MMT复合材料,对其流动性能及力学性能进行了研究.结果表明:PP-g-MMA的加入提高了PP与O-MMT的相客性,当PP-g-MMA用量为20wt%,O-MMT的用量为3wt%时,力学性能最佳:拉伸强度提高了17.46%;常温下冲击强度提高了91.05%;低温(-20℃)条件下的冲击性能比常温下提高了40.29%,比低温下的纯PP提高了246.78%.  相似文献   

6.
按一定比例加入助剂改性回收聚乙烯(PE)塑料,采用熔融共混的方法,按照一定的工艺配方将回收聚乙烯和助剂混合注塑成型,制备得到改性纳米复合材料;通过测试其力学性能,用扫描电镜(SEM)、X射线衍射(XRD)来表征其结构,找出性能理想的工艺配方.结果表明:当纳米氧化锌(Zn O)与聚乙烯辛烯共弹性体(POE)添加的质量之比为3∶2时,回收聚乙烯和填充剂、抗氧剂、增塑剂、增韧剂等助剂制备出复合材料的综合性能良好,所得复合材料的拉伸强度比回收聚乙烯提高了23.54%,弯曲强度提高了15.87%,其衍射峰的强度增加了50%,且峰变得尖细,其晶化程度较大.  相似文献   

7.
对凹凸棒土进行表面改性,采用直接熔融共混方法制得凹凸棒土(AT)/聚酰胺(PA)复合材料,以提高复合材料的性能。测量了复合材料的拉伸强度和冲击强度;通过扫描电镜(SEM)照片分析了复合材料的断面结构。结果表明,添加凹凸棒土能提高PA-66的拉伸强度和冲击强度,且当添加量为6质量份时,力学性能最好。  相似文献   

8.
纳米型复合磷钨酸催化合成肉桂酸异戊酯   总被引:4,自引:0,他引:4  
以纳米型复合杂多酸H3PW12O40/SiO2为催化剂,以肉桂酸和异戊醇为原料,来合成肉桂酸异戊酯.结果表明:纳米复合磷钨酸是合成肉桂酸异戊酯的良好催化剂;适宜的工艺条件为:酸醇物质的量比为1:2.5,催化剂用量为0.6g/0.05mol肉桂酸,回流时间为3h,酯化率可达96.2%.  相似文献   

9.
将自制的乙酰化竹粉与聚己内酯共混,利用转矩流变仪制备可完全生物降解的竹塑复合材料,考察配方和加工工艺对流变性能的影响,并研究所制备的竹粉/聚己内酯复合材料的力学性能和微观形貌.研究结果表明:乙酰化竹粉/聚己内酯复合材料界面相容性好,力学性能较佳;当乙酰化竹粉在复合材料中的质量分数为35%时,复合材料的拉伸强度大于10MPa,断裂伸长率在400%以上。  相似文献   

10.
先将β成核剂TMB-5制成母粒,再用于改性聚丙烯(PP).研究结果表明TMB-5的加入对聚丙烯的拉伸强度影响小,但聚丙烯的简支梁缺口冲击强度和断裂伸长率均有较大幅度提高,TMB-5用量为0.1%时,聚丙烯的简支梁缺口冲击强度达到17.6kJ/m^2.TMB-5的加入可以提高聚丙烯的耐磨性能,TMB-5用量为0.3%时,聚丙烯的耐磨性能最佳.差示扫描量热(DSC)、广角X衍射(XRD)的研究表明:TMB-5对聚丙烯的结晶不仅具有明显的成核作用,而且部分改变了聚丙烯的晶型.  相似文献   

11.
PST/CE半互穿聚合物网络的制备与表征   总被引:3,自引:1,他引:2  
在引发剂偶氮异丁腈(AIBN)作用下,单体苯乙烯(ST)与氰酸酯树脂(CE)聚合,异步合成聚苯乙烯/氰酸酯树脂半互穿网络(PST/CE-Semi-IPN)聚合物.力学性能测试结果表明,PST/CE-Semi-IPN在PST/CE为15/85时,其冲击强度、弯曲强度分别比纯CE提高了66.4%和16.4%;FT-IR和DSC分析结果表明,形成网络的各组分间未发生化学反应.与CE比较,聚合物网络的韧性提高,耐热性能得以保持.  相似文献   

12.
以自制硅酸钙(CaSiO3)和羟基磷灰石(HAP)超细粉体为原料,按照不同的比例混合、成型、煅烧制得CaSiO3-HAP复合生物陶瓷。采用X-射线衍射仪(XRD)和扫描电镜(SEM)对粉体及陶瓷样品进行物相成分和显微结构分析,并对复合生物陶瓷的收缩率、抗弯强度、断裂韧性和硬度等性能进行测定。研究结果表明:在HAP中添加一定量的CaSiO3,可以减小HAP陶瓷的收缩,并能提高其力学性能,CaSiO3含量为30wt%的CaSiO3-HAP复合生物陶瓷综合性能最佳,其抗弯强度和断裂韧性分别达到156.7MPa和2.32MPa·m^1/2,维氏硬度值达到6.5GPa,比纯HAP陶瓷的性能均有了较大的提高。  相似文献   

13.
以硅酸盐和硫铝酸盐复合水泥为基材制作水泥基注浆材料,分别讨论了不同类型、不同掺量的粉煤灰和矿粉对水泥基注浆材料的流动度、容重、膨胀率、抗压抗折强度的影响。结果表明:粉煤灰能有效地增加水泥基注浆料的流动度,当粉煤灰掺量低于20%时,可以提高注浆料的塑性膨胀率,当Ⅰ级粉煤灰掺量为20%或Ⅱ级粉煤灰掺量为15%时,3 h膨胀率最高达1%;粉煤灰对注浆料的早期强度不利,但可以增强其后期强度。矿粉可以改善其流动度,随着矿粉的增加,注浆料的容重和膨胀率均呈下降趋势;矿粉对注浆料的28 d强度无显著影响,其早期强度随着矿粉的增加而下降,当S75矿粉掺量高于7%或S95矿粉掺量高于11%时,抗压抗折强度不满足规范要求。  相似文献   

14.
为了研究钢筋增强ECC梁受弯性能,进行了钢筋增强ECC梁和普通钢筋混凝土梁受弯的对比研究.结果表明,相比普通钢筋混凝土梁,钢筋增强ECC梁的受弯承载力和延性分别提高了24.8%和187.76%,并且在梁中用ECC代替混凝土可有效延缓裂缝的发展.此外,采用简化的ECC本构模型对钢筋增强ECC及混凝土梁的受弯性能进行了非线性有限元分析,模拟结果与试验结果吻合较好,在服役期间钢筋增强ECC梁的裂缝可以控制在0.4 mm以下.ECC材料的使用可明显提高梁的抗弯承载力、变形能力、延性等受弯性能.  相似文献   

15.
为合理利用赤泥中的碱性成分,采用胶砂强度实验法将赤泥、石灰组合成赤泥基材料,在此基础上研究了赤泥-石灰体系与矿渣组合在碱激发下的强度变化规律.实验证明赤泥-石灰体系掺量为0%~20%时,随掺量的增加抗折强度不断增加;赤泥-石灰体系掺量为0%~15%时,随掺量增加抗压强度不断增加;赤泥-石灰体系掺量达25%时,强度依然和碱矿渣水泥相当.对碱激发赤泥基胶凝材料浆体的SEM分析表明,赤泥、石灰完全参与水化反应.  相似文献   

16.
为了测定耐碱玻璃纤维混凝土的抗折强度并分析其不确定度及纤维体积率对混凝土抗折强度的影响,选择耐碱玻璃纤维体积率为0%0,.6%,0.8%,1.0%的100 mm×100 mm×400 mm混凝土抗折试件进行试验。试验在MTS810材料试验机上进行,通过三分点加载测定其抗折强度,分析混凝土抗折强度试验中影响试验结果不确定的因素和来源,并按照JJF 1059-1999标准的要求,对合理玻璃纤维掺量试件的抗折强度的不确定度进行分析和评定。结果表明:耐碱玻璃纤维的掺入改变了混凝土抗折破坏形式,不同纤维体积率的混凝土抗折强度较普通混凝土依次提高了18.87%,21.64%,23.24%。综合考虑各方面因素确定耐碱玻璃纤维混凝土合理玻璃纤维掺量为0.6%;通过对试件抗折强度测定的不确定度评定,表明数学模型中自由度及测量的重复性是引入测量结果不确定度的主要因素;建议在进行同类试验时,试件尺寸应尽量大,从而可增大跨距,以减小剪力对测量结果的影响。  相似文献   

17.
粉煤灰地质聚合物的最优强度研究   总被引:2,自引:0,他引:2  
研究了粉煤灰地质聚合物的最佳配比及影响其强度的主要因素.利用正交实验法得出了粉煤灰地质聚合物抗折强度和抗压强度的最佳配比,并对其机理进行了分析.实验表明,球磨时间、防水剂、水灰比、加碱量、养护时间都对粉煤灰地质聚合物强度有重要影响,其中加碱量的影响最大.当球磨时间1 h,防水剂含量为8%,水灰比为0.34,加碱量为6%,养护时间为4 h时抗折强度达到最大;当球磨时间1 h,防水剂含量为4%,水灰比为0.34,加碱量为10%,养护时间为24 h时抗压强度达到最大.  相似文献   

18.
成功制备了氧缺陷型Sb2O3-x/rGO复合材料.与纯Sb2O3材料相比,Sb2O3-x/rGO复合材料颗粒尺寸大大减小,导电性能得到提高,作为锂离子电池的负极材料,具有更高的可逆能力、更好的循环稳定性和良好的倍率性能.在电流密度为100 mAh·g^-1的情况下,Sb2O3-x/rGO复合材料的初始放电容量可达1336.6 mAh·g^-1.即使经过50次充放电循环后,其充放电容量依然可以保持在405.8 mAh·g^-1.  相似文献   

19.
以工业固废镍渣为原料,采用机械力化学制备单组分镍渣基地聚物。研究碱激发剂种类和碱掺量对镍渣基地聚物砂浆抗压强度的影响规律,结合XRD、SEM及EDS等试验对水化产物进行表征。结果表明:当碱激发剂为复掺Na2SiO3/Na2CO3,wNa2O=6.5%时,单组分镍渣基地聚物28 d抗压强度可达68.96 MPa。单掺NaOH对镍渣活性激发效果有限,单掺Na2SiO3和复掺Na2SiO3/Na2CO3激发效果显著,单掺Na2SiO3和复掺Na2SiO3/Na2CO3不能使地聚物的矿物组成发生较大改变,但可以显著提高反应体系中凝胶产物的生成量,改善地聚物微观结构的致密程度。  相似文献   

20.
A new type of green reactive powder concrete (GRPC) with compressive strength of 200 MPa is prepared by utilizing composite mineral admixtures, natural fine aggregates, and short and fine steel fibers. The quasi-static mechanical properties (mechanical strength, toughness, fracture energy and interfacial bonding strength) of GRPC specimens, cured in three different types of regimes, are investigated. The experimental results show that the mechanical properties of the C200 GRPC made with the powder binders that is composed of 40% of Portland cement, 25% of ultra fine slag, 25% of ultra fine fly ash and 10% of silica fume are better than the others'. The corresponding compressive strength, flexural strength and fracture energy are more than 200 MPa, and 30 000 J/ m2 respectively. The dynamic tensile behavior of the C200 GRPC is also investigated through the split Hopkinson pressure bar (SHPB) according to the spalling phenomenon. The dynamic testing results demonstrate that strain rate has an important effect on the dynamic tensile behavior of GRPC. With the increase of strain rate, its peak stress and relevant strain increase. The GRPC exhibits an excellent strain ratio stiffening effect under the dynamic tensile load with high strain ratio, resulting in a significant change of the fracture pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号