首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Science educators have claimed that well-conceived instructional strategies and curricular sequences, emphasizing the process aspects of science, will foster an understanding of the nature of science. Furthermore, a process emphasis on science has been cited for its ability to promote logical thinking skill, develop a locus of control “shift,” and enhance science content acquisition. The intent of this investigation was to examine the purported influence and developmental nature of a science process emphasis during a given semester of study, as well as over extended curricular sequences, each sequence being representative of three recognized preservice elementary science teacher preparatory programs. Data were collected from 135 elementary preservice teachers enrolled in science teaching methods courses at the endpoint of one of three sequences: (a) introductory process instruction with three subsequent semesters of integrated science content and teaching methods, (b) process instruction with separate subsequent content and teaching methods, and (c) only science content with subsequent teaching methods. Another 29 preservice teachers, assessed prior to entry into instructional sequences, provided a cross-sectional sample for examining developmental changes in locus of control, logical thinking, nature of science, and science content knowledge. Statistical procedures included Kruskal-Wallis ANOVA and Wilcoxon tests. Results indicated that a one-semester process skills course was influential in developing a basis for science content acquisition and in fostering an understanding of the nature of science. Results further indicate that expected additional gains are significant in science content acquisition through matriculation in an extended curricular sequence. Implications for science educators are discussed.  相似文献   

2.
The purpose of this study was to determine the effects of computer-assisted instruction (CAI) versus a text mode of programmed instruction (PI), and the cognitive style of locus of control, on preservice elementary teachers' achievement of the integrated science process skills. Eighty-one preservice elementary teachers in six sections of a science methods class were classified as internally or externally controlled. The sections were randomly assigned to receive instruction in the integrated science process skills via a microcomputer or printed text. The study used a pretest-posttest control group design. Before assessing main and interaction effects, analysis of covariance was used to adjust posttest scores using the pretest scores. Statistical analysis revealed that main effects were not significant. Additionally, no interaction effects between treatments and loci of control were demonstrated. The results suggest that printed PI and tutorial CAI are equally effective modes of instruction for teaching internally and externally oriented preservice elementary teachers the integrated science process skills.  相似文献   

3.
This study examined the views, and the retention of these views, of 19 preservice elementary teachers as they learned about nature of science (NOS). The preservice teachers participated in a cohort group as they took a science methods course during which they received explicit reflective instruction in nature of science. Through Views of Nature of Science version B (VNOS‐B) surveys and interviews it was found that most preservice teachers held inadequate ideas of nature of science prior to instruction, but improved their views after one semester of instruction in the science methods course. However, 5 months after instruction, the graduate preservice teachers were again interviewed and it was found that several of the students reverted back to their earlier views. The results are interpreted through Perry's scheme, and implications and recommendations for elementary science teacher education are made. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 43: 194–213, 2006  相似文献   

4.
Part of the work of teaching elementary science involves evaluating elementary students' work. Depending on the nature of the student work, this task can be straightforward. However, evaluating elementary students' representations of their science learning in the form of scientific models can pose significant challenges for elementary teachers. To address some of these challenges, we incorporated a modeling-based elementary science unit in our elementary science teaching methods course to support preservice teachers in gaining knowledge about and experience in evaluating students' scientific models. In this study, we investigate the approaches and criteria preservice elementary teachers use to evaluate elementary student-generated scientific models. Our findings suggest that with instruction, preservice elementary teachers can adopt criterion-based approaches to evaluating students' scientific models. Additionally, preservice teachers make gains in their self-efficacy for evaluating elementary students' scientific models. Taken together, these findings indicate that preservice teachers can begin to develop aspects of pedagogical content knowledge for scientific modeling.  相似文献   

5.
This mixed‐methods investigation compared the relative impacts of instructional approach and context of nature of science instruction on preservice elementary teachers' understandings. The sample consisted of 75 preservice teachers enrolled in four sections of an elementary science methods course. Independent variables included instructional approach to teaching nature of science (implicit vs. explicit) and the context of nature of science instruction (as a stand‐alone topic vs. situated within instruction about global climate change and global warming). These treatments were randomly applied to the four class sections along a 2 × 2 matrix, permitting the comparison of outcomes for each independent variable separately and in combination to those of a control group. Data collection spanned the semester‐long course and included written responses to pre‐ and post‐treatment administrations of the VNOS‐B, semi‐structured interviews, and a variety of classroom artifacts. Qualitative methods were used to analyze the data with the goal of constructing profiles of participants' understandings of the nature of science and of global climate change /global warming (GCC/GW). These profiles were compared across treatments using non‐parametric statistics to assess the relative effectiveness of the four instructional approaches. Results indicated that preservice teachers who experienced explicit instruction about the nature of science made statistically significant gains in their views of nature of science regardless of whether the nature of science instruction was situated within the context of GCC/GW or as a stand‐alone topic. Further, the participants who experienced explicit nature of science instruction as a stand‐alone topic were able to apply their understandings of nature of science appropriately to novel situations and issues. We address the implications of these results for teaching the nature of science in teacher preparation courses. © 2010 Wiley Periodicals, Inc., Inc. J Res Sci Teach 48: 414–436, 2011  相似文献   

6.
Inadequate science knowledge of preservice teachers enrolled in science methods courses not only limits their mastery of effective teaching practices, but also may foster negative attitudes toward science teaching. This study investigated the influence of science knowledge upon attitudes toward science teaching in a one-semester elementary science methods course by embedding a videodisk-based instructional component to remediate knowledge deficiencies. Preservice teachers in the experimental group first learned core concepts in physical and earth science through a series of 24 interactive videodisk lessons and then used the concepts as a foundation for preparing and presenting model science lessons. Results showed that the experimental group overcame their initial knowledge deficiencies by mastering the core concepts presented (mean proportion correct on mastery test = 0.91), with multivariate covariance analysis confirming that the experimentals gain in science knowledge was significantly greater than comparable controls in the parallel science methods sections. Additionally, as a result of mastering the core concepts underlying earth science, preservice teachers using the videodisk instruction also displayed significantly greater confidence in their understanding of science knowledge and more positive attitudes toward science teaching at the elementary levels. Implications for improving elementary science teaching through preservice and in-service training are discussed.  相似文献   

7.
To examine the notion of environmental education (EE) as context for integrating the elementary curricula, we engaged in a multi-case study analysis (Yin 2009) of two preservice elementary science methods courses that utilized an experiential reflective approach—case one (University A) through a science content focus (i.e., sustainability) and case two (University B) through a method focus (i.e., problem-based learning). We examined preservice teachers’ understandings of EE, their ideas to incorporate EE into their future teaching, and their conceptions of EE as a context for integration. Results indicate that both foci (content and method) were successful in building EE content, helping preservice teachers to envision EE in their future classrooms, and promoting EE as a context for integrating their instruction. Based on these results, we offer recommendations for the incorporation of EE as a context for integration into the elementary science methods course.  相似文献   

8.
Using the National Research Council's inquiry continuum framework, we use a multiple-case study research design to investigate the teacher- and student-directedness of elementary preservice teachers’ planned and enacted science lessons and their pedagogical reasoning about science instruction during a semester-long science methods course. Our specific research questions were (1) What ideas do elementary preservice teachers bring to a science teaching methods course about the inquiry continuum? and (2) How do their ideas about the inquiry continuum change over the course of the semester through engaging in planning, enactment, and reflection upon science instruction? Participants’ course artifacts (journals, reflective teaching assignments, and lesson plan rationales), interviews, and field observations of their enacted science lessons served as data for this study. Findings show that although the preservice teachers began the semester defining inquiry as highly student-directed, their ideas and definitions broadened over the course of the semester to include and embrace more teacher-directed forms of inquiry. Their early science lessons were more student-directed but, as they encountered challenges engaging in inquiry-based instruction and increasingly emphasized students’ learning needs, they began to plan and enact lessons that were more teacher-directed. Teacher education programs need to explicitly emphasize these variations of inquiry as a core component of supporting preservice teachers’ learning to teach science as inquiry.  相似文献   

9.

The intent of the present study is to describe preservice elementary teachers’ understanding of science and how certain contextual variables contribute to this understanding.

Eighty students in three sections of an elementary science methods course participated in the study by completing a questionnaire. Six questions dealt with knowledge of science, theories and evolution. In addition, a 21‐item rating scale covering various aspects of science and science teaching was included.

The major theme arising out of the data is how beliefs affect preservice teachers’ understandings of science. The anthropocentricity in the subjects’ definitions and purposes of science, theories and evolution is the most explicit and pervasive of the beliefs influencing the conceptualizations of science. The often vague and misinformed definitions of theories add a further dimension of how science is perceived. When evolution is introduced, both the anthropocentric view of science and the misunderstood notion of theory come together to confound the subjects’ understanding. When asked about the teaching of evolution, the subjects’ confusion concerning the nature of science becomes strikingly evident.

  相似文献   

10.
This article describes teaching considerations related to the nature of science and scientific knowledge in an elementary science methods course. The decisions that were made, the rationale upon which these decisions were based, and the challenges evident are presented. Instructional strategies used during the course for the purpose of developing preservice teachers' understandings of the nature of science and scientific knowledge are described. The results of using these strategies, in regard to the impact on students' learning and their views on teaching the nature of science to elementary grade students are then discussed. The article concludes with a discussion on the implications for teaching the nature of science and scientific knowledge in the context of preservice elementary teacher education.  相似文献   

11.
Success in Science Learning and Preservice Science Teaching Self-Efficacy   总被引:2,自引:0,他引:2  
This study examined relationships between conceptual understanding, self-efficacy, and outcome expectancy beliefs as preservice teachers learned science in a constructivist-oriented methods class. Participants included 49 preservice elementary teachers. Analysis revealed that participants increased in self-efficacy, outcome expectancy, and conceptual understanding. Engaging preservice teachers in hands-on, minds-on activities and discussion were important contributors. Participants reported that they would be inclined to teach from a constructivist perspective in the future. One implication from this study is that increasing the quantity of science content courses that preservice elementary teachers are required to take may not be sufficient to overcome their reluctance to teach science if some of their learning does not take place in a constructivist environment. In our teaching, we have tried to integrate pedagogy with learning science content.  相似文献   

12.
The purpose of this study was to compare the effects of two methods of instruction designed to teach preservice elementary teachers to acquire and retain integrated science process skills. In one section instruction was provided by the teacher, whereas in the other section, instruction was provided by written self-paced self-instructional materials. Results indicated that the self-instructional method was significantly more effective than the teacher-directed method. Both treatments produced long-lasting retention effects.  相似文献   

13.
In this study, a Beliefs About Teaching (BAT) scale was created to examine preservice elementary science teachers’ self-reported comfort level with both traditional and reform-based teaching methods, assessment techniques, classroom management techniques, and science content. Participants included 166 preservice teachers from three different US universities. Analyses revealed significant correlations among participants’ confidence level with assessment techniques, classroom management, teaching methods, and science content and number of science methods and science content courses taken. A significant difference was observed among the students enrolled at each university. Overall, study participants felt more comfortable teaching biology concepts than teaching chemistry concepts, physics concepts, or both.  相似文献   

14.
This investigation assessed the impact of situating explicit nature of science (NOS) instruction within the issues surrounding global climate change and global warming (GCC/GW). Participants in the study were 15 preservice elementary teachers enrolled in a science methods course. The instructional intervention included explicit NOS instruction combined with explicit GCC/GW instruction situated within the normal elementary science methods curriculum. Participants’ conceptions of NOS and GCC/GW were assessed with pre- and postadministrations of open-ended questionnaires and interviews. Results indicated that participants’ conceptions of NOS and GCC/GW improved over the course of the semester. Furthermore, participants were able to apply their conceptions to decision making about socioscientific issues. The results provide support for context-based NOS instruction in an elementary science methods course.  相似文献   

15.
Teaching geometry at the elementary level is challenging. This study examines the impact of van Hiele theory-based instructional activities embedded into an elementary mathematics methods course on preservice teachers’ geometry knowledge for teaching. Pre- and post-assessment data from 111 elementary preservice teachers revealed that van Hiele theory-based instruction can be effective in improving three strands of participants’ geometry knowledge for teaching: geometry content knowledge, knowledge of students’ van Hiele levels, and knowledge of geometry instructional activities. As a result, this paper offers implications for teacher educators and policy makers to better prepare elementary preservice teachers with geometry knowledge for teaching.  相似文献   

16.
This investigation explores the effectiveness of a teacher preparation program aligned with situated learning theory on preservice science teachers' use of technology during their student teaching experiences. Participants included 26 preservice science teachers enrolled in a 2‐year Master of Teaching program. A specific program goal was to prepare teachers to use technology to support reform‐based science instruction. To this end, the program integrated technology instruction across five courses and situated this instruction within the context of learning and teaching science. A variety of data sources were used to characterize the participants' intentions and instructional practices, including classroom observations, lesson plans, interviews, and written reflections. Data analysis followed a constant comparative process with the goal of describing if, how, and why the participants integrated technology into their instruction and the extent to which they applied, adapted, and innovated upon what they learned in the science teacher preparation program. Results indicate that all participants used technology throughout their student teaching for reform‐based science instruction. Additionally, they used digital images, videos, animations, and simulations to teach process skills, support inquiry instruction, and to enhance student engagement in ways that represented application, adaptation, and innovation upon what they learned in the science teaching methods program. Participants cited several features of the science teacher preparation program that helped them to effectively integrate technology into their instruction. These included participating in science lessons in which technology was modeled in the context of specific instructional approaches, collaborating with peers, and opportunities for feedback and reflection after teaching lessons. The findings of this study suggest that situated learning theory may provide an effective structure for preparing preservice teachers to integrate technology in ways that support reform‐based instruction. © 2013 Wiley Periodicals, Inc. J Res Sci Teach 50:348–379, 2013  相似文献   

17.
The challenge of preparing students for the information age has prompted administrators to increase technology in the public schools. Yet despite the increased availability of technology in schools, few teachers are integrating technology for instructional purposes. Preservice teachers must be equipped with adequate content knowledge of technology to create an advantageous learning experience in science classrooms. To understand preservice teachers’ conceptions of technology integration, this research study explored 15 elementary science methods students’ definitions of technology and their attitudes toward incorporating technology into their teaching. The phenomenological study took place in a science methods course that was based on a constructivist approach to teaching and learning science through science activities and class discussions, with an emphasis on a teacher beliefs framework. Data were collected throughout the semester, including an open-ended pre/post-technology integration survey, lesson plans, and reflections on activities conducted throughout the course. Through a qualitative analysis, we identified improvements in students’ technology definitions, increased technology incorporation into science lesson plans, and favorable attitudes toward technology integration in science teaching after instruction. This research project demonstrates that positive changes in beliefs and behaviors relating to technology integration in science instruction among preservice teachers are possible through explicit instruction.  相似文献   

18.
19.
Science vocabulary knowledge plays a role in understanding science concepts, and science knowledge is measured in part by correct use of science vocabulary (Lee et al. in J Res Sci Teach 32(8):797–816, 1995). Elementary school students have growing vocabularies and many are learning English as a secondary language or depend on schools to learn academic English. Teachers must have a clear understanding of science vocabulary in order to communicate and evaluate these understandings with students. The present study measured preservice teachers’ vocabulary knowledge during a science methods course and documented their use of science vocabulary during peer teaching. The data indicate that the course positively impacted the preservice teachers’ knowledge of select elementary science vocabulary; however, use of science terms was inconsistent in microteaching lessons. Recommendations include providing multiple vocabulary instruction strategies in teacher preparation.  相似文献   

20.
This study aimed to delineate the factors mediating the translation of preservice teachers' conceptions of the nature of science into instructional planning and classroom practice. Additionally, the study assessed the influence of temporally separating teaching preservice teachers about the nature of science and teaching them how to address it instructionally. This latter intervention was based on the results of a previous investigation. Prior to student teaching, the 13 participants responded to an open‐ended questionnaire designed to assess conceptions of the nature of science. Throughout student teaching, daily lesson plans, classroom videotapes, portfolios, and supervisors' weekly clinical observation notes were collected and searched for explicit instances of nature of science planning and/or instruction. Following student teaching, participants were interviewed to validate their responses to the open‐ended questionnaire, identify factors that mediate the translation of their conceptions of the nature of science into classroom teaching, and explicate their pedagogical preferences for teaching the nature of science. Participants possessed adequate understanding of several aspects of the nature of science and, contrary to the results of the earlier investigation, most did not conflate the nature of science with science processes. Furthermore, several participants explicitly addressed some aspects of the nature of science during classroom instruction. Participants, however, failed to include the nature of science among their instructional objectives and did not make a concerted effort to assess student understandings. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 563–581, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号