首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于一个复数列a_1,a_2,…,a_n,… (1) 若存在K∈N与K个复常数P_1,P_2,…P_k(P_k≠0),使得关系式:(2)(f(n)(?)0)  相似文献   

2.
在本文中(1)证明了参考文献[2]与[3]中所定义的两类广义正定矩阵的逆仍是同种类型的广义正定矩阵;(2)给出了参考文献[2]中广义正定矩阵的行列式满足如下不等式|A|≤a_(n n)P_(n-1)这里P_(n-1)是A的n-1阶顺序主子式.进一步有|A|≤a_(n n)a_(n-1 n-1)…a_(22)a_(11)  相似文献   

3.
本刊86年第一期刊载的“一个不等式的证明”所介绍的不等式,若a_1>0,a_2>1,…,a_n>1,且sum from i=1 to n(a_1)=K,证I_n~K=(a_1 1/a_1)(a_2 1/a_2)…(a_n 1/a_n),则I_n~K≥(K/n n/K)~n。这个不等式在一般情况下是不成立的,例如当a_1=4,a_2=5则K=6,I_2~9=(4 1/4)(5 1/5)=22.1,而(9/2 2/9)~2=22.37 ∴I_2~9<(9/2 2/9)~2。为了指出其错误之处,现将其引理的证明抄录于下。 I_2~K=(a_1 1/a_1)(a_2 1/a_2)=a_1a_2 (a_1~2 a_2~2)/a_1a_2  相似文献   

4.
本文给出几种特殊数列的求和公式: 1、等差数列各项K次幂的和的递推公式。 2、等差数列与等比数列相应项之积的和的公式。 3、设(a_n)为等差数,公差为d,则 (1)sum from i=1 to n (a_ia_(i+k)…a_(1+k-1))=a_1a_2…a_k+(a_na_(n+1)…a_(n+k)-a_1a_2…a_(k+1))╱(k+1)d (2)sum from i=1 to n (1╱a_1a_2…a_(i+k-1))=1╱((k-1)d)(1╱a_1a_2…q_(n-1))-1╱(a_(n+1)a_(n+2)…a_(n+k=1))  相似文献   

5.
不等式是中学数学教学的重点和难点,各种杂志已介绍了不同的方法,本文将通过构造函数,巧妙地解决某些不等式问题. 例1 设a_k>0(k=1,2,3,…,n),且a_1a_2…a_n≥1。求证: (a_1 a_2 … a_n)/n n/(a_1 a_2 … a_n)≥≥(a_1a_2…a_n)~(1/n) 1/(a_1a_2…a_n)~(1/n)≥1,  相似文献   

6.
F(x.y)=a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)x+2a_(23)y+a_(33)=0 (1)设点P_0(x_0,y_0)为不在曲线(1)的焦点所在区域内的点,因而过P_0可向曲线(1)作二条切线,两个切点分别为P_1(x_1,y_1),P_2(x_2,y_2),称联P_1P_2的直线l为曲线(1)关于P_0的切点弦。本文给出l的一种简易求法。 命题:若P_0(x_0,y_0)为平面上不在曲线(1)的焦点区域内的任一点,则曲线(1)关于P_0的切点弦方程为:  相似文献   

7.
给定数列{a_n},若a_n k与a_n、a_(n 1)、a_(n 2)、…、a_(n k-1)之间满足关系式a_(n k)=f(a_(n k-1),a_n k-2,…,a_n),则称此关系式为k阶递推式.由此递推式及初始值a_1、a_2、…、a_k所确定的数列{a_n}称为k阶递推数列.若a_(n k)能表成c_1(n)a_n c_2(n)a_(n 1) … c_(n k)(n)a_(n k-1)的形式,则该递推关系为k阶线性递推关系(等差、等比数列是最简单的一阶线性递推数  相似文献   

8.
我们考虑这样的数列:已知数列{a_n}的a_1,并且递推公式为a_(n+1)=qa_n+b_1P_1~n+b_2p_2~n+b_3,其中q,P_1,P_2,b_1,b_2,b_3为常数,且q≠0,P_1,P_2≠1,P_1≠P_2,这个数列的通项公式如何求法,我们分以下几种情况来讨论这种问题.一、q≠1的情况(一)当q≠pi(i=1,2)时,设a_n=u_n+a_1p_1~n+a_2p_2~n+a_3,其中a_1、a_2、a_3为待定系数.将此式代入上面的递推公式中,得  相似文献   

9.
[定理1] 设a_1,a_2,…,a_n∈(0,π),a_1+a_2+…+a_n=φ_0(定值),则sina_1+sina_2+…+sina_n≤nsinφ_0/n.当且仅当a-1=a_2…=a_2=φ_0/n时取“=”号(n≥2). 证:(1) 当n=2时,sina_1+sina_2=2sin(a_1+a_2)/2cos(a_1-a_2)/2.  相似文献   

10.
定义 若自然数a_1a_2…a_(2n)(n∈N)是一个完全平方数,且 a_1a_2…a_n (a_(n 1))(a_(n 2))…(a_(2n))也是一个完全平方数,则称a_1a_2…a_(2n)为双  相似文献   

11.
文[1]将一个无理不等式推广为:定理1 设正整数 n≥3,a_i∈R~ (i=1,2,…,n),实数 k≥(n-1)/n,则有∑(a_1/(a_2 a_3… a_n))~k≥n/(n-1)~k,当且仅当 a_1=a_2=…=a_n 时取等号.(∑表示对 a_1,a_2,…,a_n 的循环和)文[2]给出如下两个定理:定理2 若 a_i>0(i=1,2,…,n),s=,则(其中m≥1,n≥2,n∈N,p≥0,A>a_i~p).(1)  相似文献   

12.
在中学代数中,均值不等式指的是算术——几何平均值不等式:若a_i>0(i=1,2,…,n),则(a_1 a_2 … a_n)/n≥(a_1a_2…a_n,)~(n/(a_1a_2…a_n,))当且仅当a_1=a_2=…=a_n时,上式取等号(中学只讲二元、三元均值不等式)。  相似文献   

13.
《中学数学月刊》文[1]研究了2n位(不妨称为第Ⅰ类)双色完全平方数的构造,本文给出2n 1位(第Ⅱ类)双色完全平方数的定义及其构造。 定义 若2n l位自然数a_(2n 1)a_(2n)…a_2a_1(n∈N_ )是一个完全平方数,且a_(2n 1)a(2n)…a(n 1) a_n…a_2a_1也是一个完全平方数,则称a_(2n 1)a_(2n)…a_2a_1  相似文献   

14.
<正>课本习题(《普通高中课程标准实验教科书》必修2第88页"探究·拓展"15)已知两条直线a_1x+b_1y+1=0和a_2x+b_2y+1=0都过点A(1,2),求过两点P_1(a_1,b_1),P2(a_2,b_2)的直线的方程.解因为直线a_1x+b_1y+1=0,a_2x+b_2y+1=0都过点A(1,2),所以a_1+2b_1+1=0,a_2+2b_2+1=0.由于P_1(a1,b1),P_2(a_2,b_2)均适合方程x+2y+1=0,且两点确定一条直  相似文献   

15.
求自然数的方幂和S_m(n)=sum from k=1 (k~m),一般利用递推公式,先算出s_1(n),s_2(n),…,s_m-1(n),然后才能求出s_m(n)。本文给出的方法,可以直接求出sum from k=1(a_mk~m a_(m-1)k~(m-1) … a_1k a_0),其特殊情形就是sum from k=1(K~m)。  相似文献   

16.
文献[1]提出如下一个代数不等式猜想:猜想设 a_1>0,i=1,2,…,n,3≤n∈N.证明或否定:f(a)a_1/a_1a_2…a_(n-1) a_2aa_2…a_(n-2) … a_1 1 a_2/a_2a_3…a_2a_3…a_(n-1) … a_2 1 … a_n/a_1…a_(n-2) a_na_1…a_(n-3) … a_n 1≤1.文[1]作者指出:当 n=3时已给出初等证明,当 n≥4时仍为猜想.笔者指出:当 n≥4时,此不等式猜想不成  相似文献   

17.
解证某些数学命题,若先将命题中所涉及的数学对象进行恰当的分类,往往会使命题较为顺利地获解。下面就提供利用分类解题的几个例子。例1设有n+1个元素的实数集 S={a_1,a_2,…,a_(n+1)}(?)[0,1)求证:存在a_1,a_k∈S,使|a_1-a_k|<1/n。证明将实数集[0,1)中的实数分成n类,[0,1/n),[1/n,2/n),…,[(n-1)/n,1),由题设S={a_1,a_2,…,a_n,a_(n+1)}(?)[0,1)=[0,1/n)∪[1/n,2/n)∪…∪[(n-1)/n,1)  相似文献   

18.
试题:各项均为正数的数列{a_n}满足a_1= 2,a_n=a_n~(3/2) _1a_(n 2),n∈N~*.(1)若a_2=1/4,求a_3,a_4,并猜想a_(2008)的值(不需证明);(2)记b_n=a_1a_2…a_n(n∈N~*),若b_n≥22~(1/2)对n≥2恒成立,求a_2的值及数列{b_n}的通项公式.  相似文献   

19.
设数列a_0,a_1,a2,…,a_n满足a_0=1/2,及a_(k 1)=a_k (1/n)a_k~2(k=0,1,2,…,n-1),其中n是一个给定的正整数。试证:  相似文献   

20.
设ai∈R~ (i=1,2,…,n),则(a_1a_2a_3∧a_n)~(1/2)≤a_1 a_2 a_3 ∧ a_n/n(当且仅当a_1=a_2=a_3=…=a_n时取等号),并且(Ⅰ)如果这n个正数的和为定值S,那么当这几个正数相等时其积最大,等于(s/n)~n;(Ⅱ)如果这n个正数的积为定值P,那么当这几个正数相等时其和最小,等于nP~(1/n)。 以上是平均值不等式及其推论,高中数学中经常要运用它来求最值。在教学实践中本人深刻体会到,在运用均  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号