首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An automated, disk-based, enzyme-linked immunosorbent assay (ELISA) system is presented in this work. Magnetic beads were used as the antibody carriers to improve the assay sensitivity and shorten the reaction time. The magnetic module integrated on the system is capable of controlling the magnetic beads to either move in the incubation stage or immobilize at a specific location during washing stage. This controlling mechanism utilizes a passive controlling approach so that it can be performed through disk spinning without the need of active control from external devices. The movement of the magnetic beads was investigated and the optimal rotational speed was found to be related to the ratio of the processing time to the cycle time of the magnetic beads. Comparing to ELISA conducted on microtiter plates, similar test results could be achieved by the disk-based ELISA but the entire protocol can be finished automatically within 45 min with much less reagent consumption.  相似文献   

3.
This paper describes an integrated microfluidic chip that is capable of rapidly and quantitatively measuring the concentration of a bladder cancer biomarker, apolipoprotein A1, in urine samples. All of the microfluidic components, including the fluid transport system, the micro-valve, and the micro-mixer, were driven by negative pressure, which simplifies the use of the chip and facilitates commercialization. Magnetic beads were used as a solid support for the primary antibody, which captured apolipoprotein A1 in patients'' urine. Because of the three-dimensional structure of the magnetic beads, the concentration range of the target that could be detected was as high as 2000 ng ml−1. Because this concentration is 100 times higher than that quantifiable using a 96-well plate with the same enzyme-linked immunosorbent assay (ELISA) kit, the dilution of the patient''s urine can be avoided or greatly reduced. The limit of detection was determined to be approximately 10 ng ml−1, which is lower than the cutoff value for diagnosing bladder cancer (11.16 ng ml−1). When the values measured using the microfluidic chip were compared with those measured using conventional ELISA using a 96-well plate for five patients, the deviations were 0.9%, 6.8%, 9.4%, 1.8%, and 5.8%. The entire measurement time is 6-fold faster than that of conventional ELISA. This microfluidic device shows significant potential for point-of-care applications.  相似文献   

4.
An electrokinetic driven microfluidic lab-on-a-chip was developed for glucose quantification using double-enzyme assay. The enzymatic glucose assay involves the two-step oxidation of glucose, which was catalyzed by hexokinase and glucose-6-phosphate dehydrogenase, with the concomitant reduction of NADP+ to NADPH. A fluorescence microscopy setup was used to monitor the different processes (fluid flow and enzymatic reaction) in the microfluidic chip. A two-dimensional finite element model was applied to understand the different aspects of design and to improve the performance of the device without extensive prototyping. To our knowledge this is the first work to exploit numerical simulation for understanding a multisubstrate double-enzyme on-chip assay. The assay is very complex to implement in electrokinetically driven continuous system due to the involvement of many species, which has different transport velocity. With the help of numerical simulation, the design parameters, flow rate, enzyme concentration, and reactor length, were optimized. The results from the simulation were in close agreement with the experimental results. A linear relation exists for glucose concentrations from 0.01 to 0.10 g l−1. The reaction time and the amount of enzymes required were drastically reduced compared to off-chip microplate analysis.  相似文献   

5.
We report the Laser Induced Forward Transfer (LIFT) of antibodies from a liquid donor film onto paper receivers for application as point-of-care diagnostic sensors. To minimise the loss of functionality of the active biomolecules during transfer, a dynamic release layer was employed to shield the biomaterial from direct exposure to the pulsed laser source. Cellulose paper was chosen as the ideal receiver because of its inherent bio-compatibility, liquid transport properties, wide availability and low cost, all of which make it an efficient and suitable platform for point-of-care diagnostic sensors. Both enzyme-tagged and untagged IgG antibodies were LIFT-printed and their functionality was confirmed via a colorimetric enzyme-linked immunosorbent assay. Localisation of the printed antibodies was exhibited, which can allow the creation of complex 2-d patterns such as QR codes or letters for use in a final working device. Finally, a calibration curve was determined that related the intensity of the colour obtained to the concentration of active antibodies to enable quantitative assessment of the device performance. The motivation for this work was to implement a laser-based procedure for manufacturing low-cost, point-of-care diagnostic devices on paper.  相似文献   

6.
HER-2 is overexpressed in approximately 20–30% of invasive Breast Cancer. ECD of the HER-2 protein is frequently cleaved and released into the circulation, where it can be detected by ELISA in up to 45% of patients with metastatic breast cancer. The objective of our study was to compare the current methods for the detection of HER-2 protein. Tissue HER-2 levels were studied in 100 breast cancer patients by IHC and compared with serum HER-2 levels by ELISA. IHC frequency was 29%. Serum HER-2 ECD was positive in 42% of patients. A statistically significant correlation was observed. HER-2 detected by IHC correlates significantly with serum HER-2 levels detected by ELISA. Thus, ELISA is a reliable and economical tool to assess the HER-2 status in tumors, when breast tissue sample is not available.  相似文献   

7.
The AC electrothermal technique is very promising for biofluid micropumping, due to its ability to pump high conductivity fluids. However, compared to electroosmotic micropumps, a lack of high fluid flow is a disadvantage. In this paper, a novel AC multiple array electrothermal (MAET) micropump, utilizing multiple microelectrode arrays placed on the side-walls of the fluidic channel of the micropump, is introduced. Asymmetric coplanar microelectrodes are placed on all sides of the microfluidic channel, and are actuated in different phases: one, two opposing, two adjacent, three, or all sides at the same time. Micropumps with different combinations of side electrodes and cross sections are numerically investigated in this paper. The effect of the governing parameters with respect to thermal, fluidic, and electrical properties are studied and discussed. To verify the simulations, the AC MAET concept was then fabricated and experimentally tested. The resulted fluid flow achieved by the experiments showed good agreement with the corresponding simulations. The number of side electrode arrays and the actuation patterns were also found to greatly influence the micropump performance. This study shows that the new multiple array electrothermal micropump design can be used in a wide range of applications such as drug delivery and lab-on-a-chip, where high flow rate and high precision micropumping devices for high conductivity fluids are needed.  相似文献   

8.
Heavy metal ions released into various water systems have a severe impact on the environment and human beings, and excess exposure to toxic metal ions through drinking water poses high risks to human health and causes life-threatening diseases. Thus, there is high demand for the development of a rapid, low-cost, and sensitive method for detection of metal ions in water. We present a portable analytical system for colorimetric detection of lead (Pb2+) and aluminum (Al3+) ions in water based on gold nanoparticle probes and lab-on-a-chip instrumentation. The colorimetric detection of metal ions is conducted via single-step assays with low limits of detection (LODs) and high selectivity. We design a custom-made microwell plate and a handheld colorimetric reader for implementing the assays and quantifying the signal readout. The calibration experiments demonstrate that this portable system provides LODs of 30 ppb for Pb2+ and 89 ppb for Al3+, both comparable to bench-top analytical spectrometers. It promises an effective platform for metal ion analysis in a more economical and convenient way, which is particularly useful for water quality monitoring in field and resource-poor settings.  相似文献   

9.
Integration of nano-materials in optical microfluidic devices facilitates the realization of miniaturized analytical systems with enhanced sensing abilities for biological and chemical substances. In this work, a novel method of integration of gold nano-islands in a silica-on-silicon-polydimethylsiloxane microfluidic device is reported. The device works based on the nano-enhanced evanescence technique achieved by interacting the evanescent tail of propagating wave with the gold nano-islands integrated on the core of the waveguide resulting in the modification of the propagating UV-visible spectrum. The biosensing ability of the device is investigated by finite-difference time-domain simulation with a simplified model of the device. The performance of the proposed device is demonstrated for the detection of recombinant growth hormone based on antibody-antigen interaction.  相似文献   

10.
11.
In this report, we demonstrate a simple and low cost method that can be reproducibly used for fabrication of microfluidic devices in nitrocellulose. The fluidic patterns are created via a laser-based direct-write technique that induces polymerisation of a photo-polymer previously impregnated in the nitrocellulose. The resulting structures form hydrophobic barriers that extend through the thickness of the nitrocellulose and define an interconnected hydrophilic fluidic-flow pattern. Our experimental results show that using this method it is possible to achieve microfluidic channels with lateral dimensions of ∼100 μm using hydrophobic barriers that form the channel walls with dimensions of ∼60 μm; both of these values are considerably smaller than those that can be achieved with other current techniques used in the fabrication of nitrocellulose-based fluidic devices. A simple grid patterned nitrocellulose device was then used for the detection of C-reactive protein via a sandwich enzyme-linked immunosorbent assay, which served as a useful proof-of-principle experiment.  相似文献   

12.
13.
The emerging concept of thread-based microfluidics has shown great promise for application to inexpensive disease detection and environmental monitoring. To allow the creation of more sophisticated and functional thread-based sensor designs, the ability to better control and understand the flow of fluids in the devices is required. To meet this end, various mechanisms for controlling the flow of reagents and samples in thread-based microfluidic devices are investigated in this study. A study of fluid penetration in single threads and in twined threads provides greater practical understanding of fluid velocity and ultimate penetration for the design of devices. “Switches” which control when or where flow can occur, or allow the mixing of multiple fluids, have been successfully prototyped from multifilament threads, plastic films, and household adhesive. This advancement allows the fabrication of more functional sensory devices which can incorporate more complex detection chemistries, while maintaining low production cost and simplicity of construction.  相似文献   

14.
Blood can be a window to health, and as a result, is the most intensively studied human biofluid. Blood tests can diagnose diseases, monitor therapeutic drugs, and provide information about the health of an individual. Rapid response blood tests are becoming increasingly essential, especially when subsequent treatment is required. Toward this need, paper-based devices have been excellent tools for performing blood tests due to their ability to conduct rapid and low-cost diagnostics and analyses in a non-laboratory environment. In this Perspective, we review recent advances in paper-based blood tests, particularly focusing on the specific techniques and assays applied. Additionally, we discuss the future of these paper-based devices, such as how the signal intensity can be enhanced and how the in situ synthesis of nanomaterials can be used to improve the sensitivity, functionality, and operational simplicity. With these advances, paper-based devices are becoming increasingly valuable tools for point-of-care blood tests in various practical scenarios.  相似文献   

15.
Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.  相似文献   

16.
Levels of Atrial Natriuretic Peptide (ANP) were estimated in twenty four blood samples collected from the right and the left ventricles of the patients undergoing cardiac catheterization by an Enzyme Linked Immunosorbent Assay (ELISA) developed to the sensitivity of 5 pp/well and within 10% of interassay coeficient of variance. Simultaneously, levels of ANP in plasma samples from the systemic venous blood of seventy five normal subjects were also estimated which ranged between 25–60 pg/ml.  相似文献   

17.
Access to information via handheld devices supports decision making away from one’s computer. However, limitations include small screens and constrained wireless bandwidth. We present a summarization method that transforms online content for delivery to small devices. Unlike previous algorithms, ours assumes nothing about document formatting, and induces a hierarchical structure based on the relative importance of sentences within the document. As compared to delivering full documents, the method reduces the bytes transferred by half. An experiment also demonstrates that when given hierarchical summaries, users are no less accurate in answering questions about the documents.  相似文献   

18.
In this work, we demonstrate the use of stereolithographic 3D printing to fabricate millifluidic devices, which are used to engineer particles with multiple compartments. As the 3D design is directly transferred to the actual prototype, this method accommodates 3D millimeter-scaled features that are difficult to achieve by either lithographic-based microfabrication or traditional macrofabrication techniques. We exploit this approach to produce millifluidic networks to deliver multiple fluidic components. By taking advantage of the laminar flow, the fluidic components can form liquid jets with distinct patterns, and each pattern has clear boundaries between the liquid phases. Afterwards, droplets with controlled size are fabricated by spraying the liquid jet in an electric field, and subsequently converted to particles after a solidification step. As a demonstration, we fabricate calcium alginate particles with structures of (1) slice-by-slice multiple lamellae, (2) concentric core-shells, and (3) petals surrounding the particle centers. Furthermore, distinct hybrid particles combining two or more of the above structures are also obtained. These compartmentalized particles impart spatially dependent functionalities and properties. To show their applicability, various ingredients, including fruit juices, drugs, and magnetic nanoparticles are encapsulated in the different compartments as proof-of-concepts for applications, including food, drug delivery, and bioassays. Our 3D printed electro-millifluidic approach represents a convenient and robust method to extend the range of structures of functional particles.  相似文献   

19.
Implementations of Lab-on-a-Chip technologies for in-situ analysis of small model organisms and embryos (both invertebrate and vertebrate) are attracting an increasing interest. A significant hurdle to widespread applications of microfluidic and millifluidic devices for in-situ analysis of small model organisms is the access to expensive clean room facilities and complex microfabrication technologies. Furthermore, these resources require significant investments and engineering know-how. For example, poly(dimethylsiloxane) soft lithography is still largely unattainable to the gross majority of biomedical laboratories willing to pursue development of chip-based platforms. They often turn instead to readily available but inferior classical solutions. We refer to this phenomenon as workshop-to-bench gap of bioengineering science. To tackle the above issues, we examined the capabilities of commercially available Multi-Jet Modelling (MJM) and Stereolithography (SLA) systems for low volume fabrication of optical-grade millifluidic devices designed for culture and biotests performed on millimetre-sized specimens such as zebrafish embryos. The selected 3D printing technologies spanned a range from affordable personal desktop systems to high-end professional printers. The main motivation of our work was to pave the way for off-the-shelf and user-friendly 3D printing methods in order to rapidly and inexpensively build optical-grade millifluidic devices for customized studies on small model organisms. Compared with other rapid prototyping technologies such as soft lithography and infrared laser micromachining in poly(methyl methacrylate), we demonstrate that selected SLA technologies can achieve user-friendly and rapid production of prototypes, superior feature reproduction quality, and comparable levels of optical transparency. A caution need to be, however, exercised as majority of tested SLA and MJM resins were found toxic and caused significant developmental abnormalities in zebrafish embryos. Taken together, our data demonstrate that SLA technologies can be used for rapid and accurate production of devices for biomedical research. However, polymer biotoxicity needs to be carefully evaluated.  相似文献   

20.
The integration of Cyber-Physical Systems in the industrial domain has become indispensable for Industry 4.0. Unfortunately, as the interconnectivity among them increases, so do the opportunities for malicious users to target them. Hence, it is necessary to increase the security of these systems and their components. A wide range of security solutions (e.g., industrial Firewalls) are already an integral part of Industrial Automation Systems, however, these are deployed at strategical system locations and might not be capable of identifying intrusions that target specific elements of embedded industrial devices. Host Intrusion Detection Systems (Host IDS) are one security solution that allow to detect such type of intrusions, as they analyze information related to specific host devices. This contribution presents a feasible Host IDS architecture for embedded industrial devices. This architecture takes into consideration features and capabilities of Host IDS from the IT domain. It also considers system-, environmental- and device-specific properties from the industrial domain. These properties are presented in the form of abstracted requirements and considerations that are contemplated for the conceptualization of the presented architecture. Furthermore, the feasibility of this architecture is validated through the implementation and evaluation of a prototypical Host IDS deployed in a Programmable Logic Controller (PLC) hosting a Real-Time Operating System (RTOS). This evaluation is achieved through the demonstration of a set of hypotheses derived from the abstracted requirements and supported by the evaluation of test scenarios. To the best of our knowledge, this is the first fully operational Host IDS to be deployed and evaluated on a PLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号