首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Submicrorepresentations (SMR) could be an important element, not only for explaining the experimental observations to students, but also in the process of evaluating students’ knowledge and identifying their chemical misconceptions. This study investigated the level of students’ understanding of the solution concentration and the process of dissolving ionic and molecular crystals at particulate level, and identifies possible misconceptions about this process. Altogether 408 secondary school students (average age 16.3) participated in the study. The test of chemical knowledge was applied and the analysis of four selected problems related to drawing SMRs in solution chemistry is presented. Selected students were also interviewed in order to gain more detailed data about their way of solving problems comprised in the knowledge test. The average achievement on solution chemistry items was only 43%. It can be concluded from the results that students have different misconceptions about arrangements of solute particles in the solution and presentation of its concentration at particulate level. Students show quite low achievement scores on the problem regarding drawing the SMR of ionic substance aqueous solution (7.6% correct answers) and even lower ones on the problem regarding drawing the SMR of diluted and saturated aqueous solutions of molecular crystal (no completely correct answers). It can be also concluded that many different misconceptions concerning the particulate level of basic solution chemistry concepts can be identified. In the conclusion some implications for teaching to reach a higher level of understanding of solution chemistry are proposed.  相似文献   

2.
The purpose of this study was to investigate prospective mathematics teachers’ knowledge of common conceptions and misconceptions that sixth and seventh grade students had about multiplication of fractions. In addition, prospective teachers’ knowledge of the sources of these misconceptions and strategies they knew to overcome these misconceptions was examined. Data were collected from 17 Turkish prospective teachers at the end of the spring semester of the 2004–2005 academic year. A case study design was used in which data were collected through the Multiplication of Fractions Questionnaire and semi-structured interviews. The prospective teachers suggested many difficulties that elementary grade level students may have and stated that these difficulties stemmed from students’ lack of formal knowledge and rote memorization of the algorithms. In addition, the prospective teachers suggested many strategies that could be used to overcome these misconceptions or difficulties. These strategies could be grouped under three headings: strategies based on teaching methods, strategies based on formal knowledge of fractions, and strategies based on psychological constructs.  相似文献   

3.
A formative assessment pretest was administered to undergraduate students at the beginning of a science course in order to find out their prior knowledge, misconceptions and learning difficulties on the topic of the human respiratory system and energy issues. Those findings could provide their instructors with the valuable information required in order to adapt their teaching methods to the students’ needs. The test included open-ended questions and was administered on the first day of the course. The data obtained were analysed in relation to the students’ gender, age and having attended or not attended advanced courses in biology at the high-school level. Students could have prior knowledge on a topic to be learned, which, if identified and accounted for in the teaching, could serve as a receptor for a constructivist mode of study. The results indicated that undergraduate students hold misconceptions which could obstruct the acquisition of new knowledge. They encounter learning difficulties, which, if are known to the instructors and addressed in their teaching, could facilitate students’ learning. The possible use of a formative pre-assessment procedure, which could guide the instruction and learning process from the beginning of a course, is discussed.  相似文献   

4.
Advocates of constructivist science recommend that school science begins with children’s own constructions of reality. This notion of the way in which students’ knowledge of science grows is closely paralleled by recent research on teachers’ knowledge. This paper draws on case study evidence of teachers’ work to show how two experienced teachers’ attempts to develop alternative ways of teaching science involved reframing their previous patterns of understanding and practice. Two alternative interpretations of the case study evidence are offered. One interpretation, which focuses on identifying gaps in the teachers’ knowledge of science teaching, leads to theconstructivist paradox. The second interpretation explores theconstructivist parallel, an approach which treats the process of teachers’ knowledge growth with the same respect as constructivists treat students’ learning of science. This approach, the authors argue, is not only more epistemologically consistent but also opens up the possibilities of helping teachers lead students towards a constructivist school science. Specializations: Teachers’ knowledge and culture, educational change, qualitative research methodology. Specializations: Teachers’ knowledge, imagery and teachers’ work, teacher collegiality, supervision of teachers’ work.  相似文献   

5.
The aim of the present study is to elicit students’ understanding of the particulate nature of matter via a cross-age study ranging from secondary to tertiary educational levels. A questionnaire with five-item open-ended questions was administered to 166 students from the secondary to tertiary levels of education. In light of the findings, it can be deduced that the number of students’ responses categorized under the “sound understanding” category for each item increased with educational level, except for U1. Also, it can be concluded that students’ specific misconceptions decreased steadily from SHS1 to SHS3, except for item 4, but there is surprisingly a clear increase at U1.  相似文献   

6.
The main goal of this study was to integrate gender and group effect into bridging strategy in order to assess the effect of bridging analogy-based instruction on sophomore students’ misconceptions in Newton’s Third Law. Specifically, the authors developed and benefited from anchoring analogy diagnostic test to merge the effect of group and gender into the strategy. Newton’s third law misconception test, attitude scale toward Newton’s third law, and classroom observation checklists were the other measuring tools utilized throughout this quasi-experimental study. The researchers also developed or used several teaching/learning materials such as gender and group splitted concept diagrams, lesson plans, gender splitted frequency tables, make sense scales, PowerPoint slides, flash cards, and demonstrations. The convenience sample of the study chosen from the accessible population involved 308 students from two public universities. The results of multivariate analysis of covariance indicated that the bridging strategy had a significant effect on students’ misconceptions in Newton’s third law whereas it had no significant effect on students’ attitudes toward Newton’s third law.  相似文献   

7.
Overcoming students’ misconceptions may be a challenge when teaching about phenomena such as climate change. Students tend to cite short-term weather effects as evidence to support or refute long-term climate transformations, which displays a fundamental misunderstanding about weather and climate distinctions. Confusion about weather and climate may also reflect student misunderstanding about deep time, a concept that spans several scientific content areas. This study examines the relationships between students’ understanding of deep time and their understandings of the distinctions between weather and climate, as well as how these understandings influence students’ perceptions about the plausibility of human-induced global climate change. Undergraduate students enrolled in an introductory science class on global climate change completed measures of their (a) understanding of distinctions between weather and climate, (b) knowledge of deep time, and (c) plausibility perceptions of human-induced climate change, both at the beginning and end of the course. The study includes comparison groups of similar students enrolled in introductory physical geography classes. Results revealed that greater knowledge of deep time and increased plausibility perceptions of human-induced climate change provide significant explanation of variance in students’ understanding of weather and climate distinctions. Furthermore, students achieve significantly increased understanding of weather and climate, even with brief instruction.  相似文献   

8.
There is a large body of research that has explored students’ misconceptions about science phenomena. Less research, however, has been devoted to identifying teachers’ misconceptions, but the results of the few existing studies demonstrate that teachers and students possess similar misconceptions. This study explored the physical science conceptions of 103 elementary science teachers to determine whether, after three decades of misconception research, teachers still possess conceptions similar to those held by students. We found that our teachers expressed misconceptions regarding gravity, magnetism, gases, and temperature that were similar to common student misconceptions. Suggestions for improving science professional development programs are discussed.  相似文献   

9.
There is a large body of research that has explored students’ misconceptions about science phenomena. Less research, however, has been devoted to identifying teachers’ misconceptions, but the results of the few existing studies demonstrate that teachers and students possess similar misconceptions. This study explored the physical science conceptions of 103 elementary science teachers to determine whether, after three decades of misconception research, teachers still possess conceptions similar to those held by students. We found that our teachers expressed misconceptions regarding gravity, magnetism, gases, and temperature that were similar to common student misconceptions. Suggestions for improving science professional development programs are discussed.  相似文献   

10.
The purpose of the study was to develop an improved teaching evaluation questionnaire based on students’ learning experiences and selected teacher characteristics identified as indicators of teaching quality. Teaching evaluation questionnaires are commonly designed either based on agreed indicators of teaching excellence, students’ suggestions of characteristics of excellence, or dimensions identified from interviews conducted with excellent teachers. In this study, however, students’ evaluation of their own learning experiences in learner centered classes and a hypothesized framework derived from the literature were used to develop the items for the questionnaire. Students attended to courses designed in a learner centered paradigm and evaluated their learning experiences. Based on the hypothesized framework and students’ reflections of their experiences, items were designed and validated at various levels. Exploratory factor analysis resulted in a 24-item Student Evaluation of Learning and Teaching Questionnaire (SELTQ) that comprises four factors: assessment and feedback; course organization and presentation; student self evaluation; and students’ level of engagement. As opposed to the questionnaire widely used in higher education institutions in Ethiopia that focuses on the evaluation of selected teacher characteristics, the new measure enables students to evaluate teaching in terms of their own learning progress.  相似文献   

11.
12.
Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students’ methods of approaching absolute value inequalities, their common mistakes, misconceptions, and the possible sources of these mistakes and misconceptions. The research study used two tools—a questionnaire and personal interviews. The questionnaire was given to 481 students in the 10th and 11th grades in Israel who studied mathematics at intermediate and advanced levels. It was administered after the students had studied inequalities. Thirty-two students were interviewed in order to find their ways of thinking and the sources of their errors. The main types of mistakes that students consistently made when solving absolute value inequalities were found. Based on the study’s findings, teachers can understand students’ thought processes and use this understanding to conduct remediation and enhance mathematics instruction.  相似文献   

13.
Patterns of Variation in Teaching the Colour of Light to Primary 3 Students   总被引:1,自引:0,他引:1  
This paper shows how the patterns of variation created in the teaching were critical in helping a class of Primary 3 students in Hong Kong to learn about the colour of light, so that the students attained conceptual rather than procedural knowledge. A ‘Learning Study’ approach was adopted, which is a Lesson Study grounded in a particular learning theory to improve teaching and learning. This study, based on the learning theory of Variation advanced by Marton and Booth, was premised on three types of variation: variation in students’ ways of experiencing what is to be taught/learnt (V1), variation in teachers’ ways of dealing with the ‘object of learning’ (V2), and the use of ‘pattern of variation’ as a guiding principle of pedagogical design to enhance students’ learning (V3). In planning the lesson, a conscious effort was made to create relevant patterns of variation, i.e. varying certain critical aspect(s) while keeping other aspects of the object of learning invariant in order to help students to discern those aspects. Comparison between the results of the pre- and post-test shows that there was significant gain in the students’ learning outcomes with respect to the intended object of learning. The findings contribute knowledge to how the Theory of Variation can be used in practice. It also illustrates how teachers can make use of this theoretical framework to analyze their own teaching and thereby, develop an analytical awareness of teaching and learning.  相似文献   

14.
15.
In Uganda, curbing the spread of HIV/AIDS has largely depended on public and private media messages about the disease. Media campaigns based on Uganda’s cultural norms of communication are metaphorical, analogical and simile-like. The topic of HIV/AIDS has been introduced into the Senior Three (Grade 11) biology curriculum in Uganda. To what extent do students’ pre-conceptions of the disease, based on these media messages influence students’ development of conceptual understanding of the disease, its transmission and prevention? Of significant importance is the impact the conceptions students have developed from the indirect media messages on classroom instruction on HIV/AIDS. The study is based in a theoretical framework of conceptual change in science learning. An interpretive case study to determine the impact of Ugandan students’ conceptions or perceptions on classroom instruction about HIV/AIDS, involving 160 students aged 15–17, was conducted in four different Ugandan high schools: girls boarding, boys boarding, mixed boarding, and mixed day. Using questionnaires, focus group discussions, recorded biology lessons and informal interviews, students’ preconceptions of HIV/AIDS and how these impact lessons on HIV/AIDS were discerned. These preconceptions fall into four main categories: religious, political, conspiracy and traditional African worldviews. Results of data analysis suggest that students’ prior knowledge is persistent even after biology instructions. This has implications for current teaching approaches, which are mostly teacher-centred in Ugandan schools. A rethinking of the curriculum with the intent of offering science education programs that promote understanding of the science of HIV/AIDS as opposed to what is happening now—insensitivity to misconceptions about the disease—is needed.  相似文献   

16.
The present study focused on investigating the effectiveness of instruction via newly developed teaching materials based on cooperative learning when compared to a traditional approach, on ninth grade students’ understanding of metallic bonding. Fifty-seven ninth grade science students from two science classes in the same high school participated in this study. The same teacher taught metallic bonding with cooperative learning to an experimental group (N = 28) and with a traditional teacher centred approach to a control group (N = 29). Students’ conceptual understanding of metallic bonding was measured using the Metallic Bonding Concept Test. The results from the Student’s t test indicated that the mean score of the students in the experimental group was significantly higher in the experimental group (78.60, SD = 8.62), than in the control group (54.33, SD = 9.11) after treatment. In the light of the results from the concept test and individual interviews, the misconceptions related to metallic bonding were found less in the experimental group than traditional. Five of these misconceptions were firstly identified in this study. The individual interviews which were done with students from experimental group immediately after the instruction showed that students had positive perceptions about their cooperative work experiences.  相似文献   

17.
A learning model for science education was proposed by Appleton (1989), based on Osborne and Wittrock’s generative learning theory (1983) and the Piagetian notions of disequilibrium, assimilation, and accommodation. The model incorporated many aspects of difficulties in learning science experienced by students, as revealed in the LISP projects and similar research. This paper examines how the model may be used to derive teaching strategies: components of the model are analysed in terms of specific types of teacher interventions which could facilitate students’ progress to accommodation. Some established teaching strategies are analysed in terms of these interventions. Specializations: primary teacher education, teaching strategies in science.  相似文献   

18.
The objective of this study was to construct a teaching strategy for facilitating students’ conceptual understanding of the boiling concept. The study is based on 52 freshman students in the primary science education department. Students’ ideas were elicited by a test consisting of nine questions. Conceptual change strategy was designed based on students’ alternative conceptions. Conceptual change in students’ understanding of boiling was evaluated by administering a pre-, post- and delayed post-test. The test scores were analysed both by qualitative and quantitative methods. Statistical analysis using one-way ANOVA of student test scores pointed to statistically significant differences in the tests and total scores (p < 0.05). Quantitative analysis of students’ responses on each test revealed different schema about changing their knowledge system. Both qualitative and quantitative analyses suggest that the teaching activities facilitated students’ conceptual understanding. No statistically significant differences were found between post-test and delayed post-test scores, suggesting that the teaching strategy enabled students to retain their new conceptions in the long-term memory.  相似文献   

19.
《Instructional Science》2012,40(5):745-754
Medical students often have initial understanding concerning medical domains, such as the central cardiovascular system (CCVS), when they enter the study programme. These notions may to some extent be in conflict with scientific understanding, which can be seen as a challenge for medical teaching. Hence, the purpose of this study was to analyse what kind of initial mental models students have about the CCVS and how these models change after a course. Further, we were interested in how medical students evaluate the role of problem-based learning (PBL)-enriched conventional instruction in their learning of the CCVS. Pre- and posttests consisting of a drawing task were conducted with 60 Finnish medical students. Additionally, problem-based learning and course evaluation questionnaires were administered. Results show that one-third of the students had misconceptions such as single-loop concepts in understanding the CCVS before the course. Although the instruction seems to support conceptual change, 10 % of the students did not reach a scientific model. In their evaluations of the learning environment, the students appreciated working in small groups in addition to lectures. Sixty-five percent of the students considered PBL an effective learning method, whereas the rest of the students found it ineffective. In sum, although most of the first-year medical students reached an adequate representation of the central cardiovascular system, too many seem to have resistant misconceptions. Hence, in developing learning environments that support students’ conceptual change in the medical domain, students’ prior knowledge and perceptions of learning environments need to be taken into account.  相似文献   

20.
This study aimed to explore secondary students’ explanations of evolutionary processes, and to determine how consistent these were, after a specific evolution instruction. In a previous study it was found that before instruction students provided different explanations for similar processes to tasks with different content. Hence, it seemed that the structure and the content of the task may have had an effect on students’ explanations. The tasks given to students demanded evolutionary explanations, in particular explanations for the origin of homologies and adaptations. Based on the conclusions from the previous study, we developed a teaching sequence in order to overcome students’ preconceptions, as well as to achieve conceptual change and explanatory coherence. Students were taught about fundamental biological concepts and the several levels of biological organization, as well as about the mechanisms of heredity and of the origin of genetic variation. Then, all these concepts were used to teach about evolution, by relating micro-concepts (e.g. genotypes) to macro-concepts (e.g. phenotypes). Moreover, during instruction students were brought to a conceptual conflict situation, where their intuitive explanations were challenged as emphasis was put on two concepts entirely opposed to their preconceptions: chance and unpredictability. From the explanations that students provided in the post-test it is concluded that conceptual change and explanatory coherence in evolution can be achieved to a certain degree by lower secondary school students through the suggested teaching sequence and the explanatory framework, which may form a basis for teaching further about evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号