首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Optofluidics may hold the key to greater success of photocatalytic water treatment. This is evidenced by our findings in this paper that the planar microfluidic reactor can overcome the limitations of mass transfer and photon transfer in the previous photocatalytic reactors and improve the photoreaction efficiency by more than 100 times. The microreactor has a planar chamber (5 cm×1.8 cm×100 μm) enclosed by two TiO(2)-coated glass slides as the top cover and bottom substrate and a microstructured UV-cured NOA81 layer as the sealant and flow input∕output. In experiment, the microreactor achieves 30% degradation of 3 ml 3×10(-5)M methylene blue within 5 min and shows a reaction rate constant two orders higher than the bulk reactor. Under optimized conditions, a reaction rate of 8% s(-1) is achieved under solar irradiation. The average apparent quantum efficiency is found to be only 0.25%, but the effective apparent quantum efficiency reaches as high as 25%. Optofluidic reactors inherit the merits of microfluidics, such as large surface∕volume ratio, easy flow control, and rapid fabrication and offer a promising prospect for large-volume photocatalytic water treatment.  相似文献   

2.
3.
In this work, dynamic controllers are designed for reactor power, pressurizer water level, and pressure control in the primary circuit of a pressurized water reactor. These nonlinear controllers use super-twisting sliding-mode estimators to enhance their robustness versus parameter variations and external disturbances. Hence, the perturbative terms can be canceled by the control, thus improving the dynamic behavior of the controlled system. The designed controllers ensure good performances and better transient behavior, also in the presence of uncertainties and disturbances. A performance study of the proposed controllers is carried out in the presence also of unmodeled dynamics.  相似文献   

4.
We reported a new microfluidic system integrated with worm responders for evaluating the environmental manganese toxicity. The micro device consists of worm loading units, worm observing chambers, and a radial concentration gradient generator (CGG). Eight T-shape worm loading units of the micro device were used to load the exact number of worms into the corresponding eight chambers with the assistance of worm responders and doorsills. The worm responder, as a key component, was employed for performing automated worm-counting assay through electric impedance sensing. This label-free and non-invasive worm-counting technique was applied to the microsystem for the first time. In addition, the disk-shaped CGG can generate a range of stepwise concentrations of the appointed chemical automatically and simultaneously. Due to the scalable architecture of radial CGG, it has the potential to increase the throughput of the assay. Dopaminergic (DAergic) neurotoxicity of manganese on C. elegans was quantitatively assessed via the observation of green fluorescence protein-tagged DAergic neurons of the strain BZ555 on-chip. In addition, oxidative stress triggered by manganese was evaluated by the quantitative fluorescence intensity of the strain CL2166. By scoring the survival ratio and stroke frequency of worms, we characterized the dose- and time-dependent mobility defects of the manganese-exposed worms. Furthermore, we applied the microsystem to investigate the effect of natural antioxidants to protect manganese-induced toxicity.  相似文献   

5.
The mechanical behavior of cells offers insight into many aspects of their properties. We propose an approach to the mechanical analysis of cells that uses a combination of electromanipulation for stimulus and capacitance for sensing. To demonstrate this approach, polystyrene spheres and yeast cells flowing in a 25 μm×100 μm microfluidic channel were detected by a perpendicular pair of gold thin film electrodes in the channel, spaced 25 μm apart. The presence of cells was detected by capacitance changes between the gold electrodes. The capacitance sensor was a resonant coaxial radio frequency cavity (2.3 GHz) coupled to the electrodes. The presence of yeast cells (Saccharomyces cerevisiae) and polystyrene spheres resulted in capacitance changes of approximately 10 and 100 attoFarad (aF), respectively, with an achieved capacitance resolution of less than 2 aF in a 30 Hz bandwidth. The resolution is better than previously reported in the literature, and the capacitance changes are in agreement with values estimated by finite element simulations. Yeast cells were trapped using dielectrophoretic forces by applying a 3 V signal at 1 MHz between the electrodes. After trapping, the cells were displaced using amplitude and frequency modulated voltages to produce modulated dielectrophoretic forces. Repetitive displacement and relaxation of these cells was observed using both capacitance and video microscopy.  相似文献   

6.
Photosynthesis in nature uses the Mn4CaO5 cluster as the oxygen-evolving center to catalyze the water oxidation efficiently in photosystem II. Herein, we demonstrate bio-inspired heterometallic LnCo3 (Ln = Nd, Eu and Ce) clusters, which can be viewed as synthetic analogs of the CaMn4O5 cluster. Anchoring LnCo3 on phosphorus-doped graphitic carbon nitrides (PCN) shows efficient overall water splitting without any sacrificial reagents. The NdCo3/PCN-c photocatalyst exhibits excellent water splitting activity and a quantum efficiency of 2.0% at 350 nm. Ultrafast transient absorption spectroscopy revealed the transfer of a photoexcited electron and hole into the PCN and LnCo3 for hydrogen and oxygen evolution reactions, respectively. A density functional theory (DFT) calculation showed the cooperative water activation on lanthanide and O−O bond formation on transition metal for water oxidation. This work not only prepares a synthetic model of a bio-inspired oxygen-evolving center but also provides an effective strategy to realize light-driven overall water splitting.  相似文献   

7.
8.
9.
In single cell analysis (SCA), individual cell-specific properties and inhomogeneous cellular responses are being investigated that is not subjected to ensemble-averaging or heterogeneous cell population effects. For proteomic single cell analysis, ultra-sensitive and reproducible separation and detection techniques are essential. Microfluidic devices combined with UV laser induced fluorescence (UV-LIF) detection have been proposed to fulfill these requirements. Here, we report on a novel microfluidic chip fabrication procedure that combines straightforward production of polydimethylsiloxane (PDMS) chips with a reduced UV fluorescence background (83%-reduction) by using PDMS droplets with carbon black pigments (CBP) as additives. The CBP-droplet is placed at the point of detection, whereas the rest of the chip remains transparent, ensuring full optical control of the chip. We systematically studied the relation of the UV background fluorescence at CBP to PDMS ratios (varying from 1:10 to 1:1000) for different UV laser powers. Using a CBP/PDMS ratio of 1:20, detection of a 100 nM tryptophan solution (S/N = 3.5) was possible, providing a theoretical limit of detection of 86 nM (with S/N = 3). Via simultaneous two color UV/VIS-LIF detection, we were able to demonstrate the electrophoretic separation of an analyte mixture of 500 nM tryptophan (UV) and 5 nM fluorescein (VIS) within 30 s. As an application, two color LIF detection was also used for the electrophoretic separation of the protein content from a GFP-labeled single Spodoptera frugiperda (Sf9) insect cell. Thereby just one single peak could be measured in the visible spectral range that could be correlated with one single peak among others in the ultraviolet spectra. This indicates an identification of the labeled protein γ-PKC and envisions a further feasible identification of more than one single protein in the future.  相似文献   

10.
Microfluidics approaches have gained popularity in the field of directed cell migration, enabling control of the extracellular environment and integration with live-cell microscopy; however, technical hurdles remain. Among the challenges are the stability and predictability of the environment, which are especially critical for the observation of fibroblasts and other slow-moving cells. Such experiments require several hours and are typically plagued by the introduction of bubbles and other disturbances that naturally arise in standard microfluidics protocols. Here, we report on the development of a passive pumping strategy, driven by the high capillary pressure and evaporative capacity of paper, and its application to study fibroblast chemotaxis. The paper pumps—flowvers (flow + clover)—are inexpensive, compact, and scalable, and they allow nearly bubble-free operation, with a predictable volumetric flow rate on the order of μl/min, for several hours. To demonstrate the utility of this approach, we combined the flowver pumping strategy with a Y-junction microfluidic device to generate a chemoattractant gradient landscape that is both stable (6+ h) and predictable (by finite-element modeling calculations). Integrated with fluorescence microscopy, we were able to recapitulate previous, live-cell imaging studies of fibroblast chemotaxis to platelet derived growth factor (PDGF), with an order-of-magnitude gain in throughput. The increased throughput of single-cell analysis allowed us to more precisely define PDGF gradient conditions conducive for chemotaxis; we were also able to interpret how the orientation of signaling through the phosphoinositide 3-kinase pathway affects the cells’ sensing of and response to conducive gradients.  相似文献   

11.
应对我国水资源问题适应性战略研究   总被引:3,自引:0,他引:3  
文章在论述中国水资源“水多、水少、水脏”主要问题基础上,阐述了水资源问题引发的生态影响,提出了建立节水型社会、建立利水型社会和走绿色水利之路的适应性战略。  相似文献   

12.
13.
社会稳定风险的应对与化解对于工程项目的实施至关重要。论文通过实地调研和文献研究的方法,以“临平净水厂”项目两次选址的过程为例,分析了第一次选址所面临的困境,第二次选址方案的优化细节,以及该方案应对社会稳定风险的策略。这些策略包括组织属地居民考察国内同类工程项目现状、制定环境影响评价公众参与方案、评估项目的社会稳定风险源和风险等级。基于此,论文对社会公众的风险感知进行分析,并对以往的工程社会稳定风险的概念和种类加以修正和重新划分。最后,论文从工程项目的社会维稳设计、利益均衡最大化原则、工程的公众具身参与三个方面,分析与总结了工程项目应对与化解社会稳定风险的策略。  相似文献   

14.
针对多目标车辆路径问题,研究了车载量、配送里程、混合时间窗等限制约束条件下,以最小配送费用和最少配送车辆数为目标建立多目标数学模型。在分析智能水滴算法求解类似离散问题时存在的局限性基础上,运用多种方式对其进行改进,并引入遗传算法选择、交叉及重组算子提高其性能,构建出两种改进智能水滴遗传混合算法,运用Solomon标准测试算例和实际算例进行验证。比较结果显示,改进后的混合算法能够有效解决离散问题,在持续寻优能力上较传统智能水滴算法和遗传算法更优;并且竞争选择改进智能水滴遗传混合算法求解算例效果最优。  相似文献   

15.
Electrocatalytic CO2 reduction(ECR) coupled with organic oxidation is a promising strategy to produce high value-added chemicals and improve energy efficiency. However, achieving the efficient redox coupling reaction is still challenging due to the lack of suitable electrocatalysts. Herein, we designed two bifunctional polyimides-linked covalent organic frameworks(PI-COFs) through assembling phthalocyanine(Pc) and porphyrin(Por) by non-toxic hydrothermal methods in pure water to reali...  相似文献   

16.
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号