共查询到19条相似文献,搜索用时 78 毫秒
1.
白如江 《现代图书情报技术》2006,1(6):47-51
结合粗糙集的属性约简和RBF神经网络的分类机理,提出一种新的文本分类混合算法。试验结果表明,与朴素贝叶斯、SVM、kNN传统分类方法相比,该方法在保持分类精度的基础上,分类速度有明显提高,体现出较好的稳定性和容错性,尤其适用于特征向量多且难以分类的文本。 相似文献
2.
一种混合文本分类方法研究 总被引:1,自引:0,他引:1
文本自动分类是信息检索领域的一个重要研究方向。一些标准的机器学习算法像支持向量机已经成功地运用到了这一领域。不幸的是高维的输入向量严重的影响了分类速度,而支持向量机核函数参数的确定影响到分类的精度。为了提高分类精度和分类速度,本文提出了一种混合分类算法,首先用粗糙集理论对向量进行约简,然后采用基因算法对支持向量机的核函数参数进行优化。实验证明我们提出的算法是有效的。 相似文献
3.
【目的】文章比较多个基于深度神经网络的中文新闻文本分类模型,旨在找到准确度较高的方法用以实际工作,为中文新闻文本分类提供更加高效的方法。【方法】对文本分类技术和中文新闻分类进行了梳理和归纳,对中文新闻文本的特征和预处理进行了阐述,详细介绍FastText算法、Bert分类算法、TextCNN算法和TextRNN算法。【结果】四种深度神经网络算法均可以应用于中文新闻文本分类,可以有效处理信息紊乱问题以及快速准确进行分类。【结论】通过对四种深度神经网络算法进行试验和效果对比,发现FastText模型在实际工作中的文本分类效果最为优异。 相似文献
4.
针对变精度粗糙集模型进行研究,提出了利用变精度粗糙集模型进行Web文档的算法。通过引入阈值β,使得用户可以通过调整β的值,实现对Web文档的不同级别的分类。试验结果表明,该算法在大大降低关键词向量维数的基础上,在保证分类准确度的前提下,有效的增加了分类的灵活性。 相似文献
5.
基于概率神经网络的文本自动分类研究 总被引:10,自引:2,他引:10
本文提出了将一种径向基网络的重要变形———概率神经网络应用于文本自动分类的研究 ,与常用的K 最邻近法相比 ,具有一定的优势 ,特别是在训练集中各类的训练样本数很不平衡时 ;与BP等其他神经网络相比 ,其特点是需调节的参数少 ,不需确定隐层数、隐层中的神经元数量等网络结构 ,比较容易使用。此外 ,从研究中的不同特征选择的评价函数来看 ,它们对分类有一定的影响 ,应用X2 统计进行特征选择的分类正确率最高 ,其次是文本证据权 ,而期望交叉熵的效果最差 ,说明特征选择在文本自动分类中也是非常重要的。 相似文献
6.
一种基于类别信息的文本自动分类模型 总被引:2,自引:0,他引:2
从理论角度分析基于互信息的特征选择方法的不足,提出一种改进的互信息特征选择方法;针对向量空间模型在文本表示方面的问题,使用类别空间模型将文本表示为矩阵,有效利用文本的类别信息,实现一种基于类别信息的文本分类算法。对中文文本的分类实验结果表明,该文本分类方法具有良好的分类效果。 相似文献
7.
文本分类中一种基于密度的KNN改进方法 总被引:1,自引:1,他引:1
特征降维与分类算法的性能是文本自动分类的两个主要问题.KNN算法以其简单、有效、非参数特点常用于文本分类,但是训练文本分布的不均匀对KNN的分类效果产生负面影响,而在实际应用中训练文本分布不均是常见现象.本文针对这种分类环境,首先提出了一种改进的tf-idf赋权方法用于特征降维,在此基础上进一步提出了一种基于密度的改进KNN方法用于文本分类, 使处于样本点分布较密集区域的样本点之间的距离增大.随后的文本分类试验表明,本文提出的方法基于密度的KNN方法具有较好的文本分类效果. 相似文献
8.
基于机器学习的文本自动分类研究进展 总被引:6,自引:0,他引:6
文本自动分类是目前最常用的文本信息自动处理技术,也是机器学习、自然语言处理和信息检索领域的研究热点之一。本文比较全面、深入地论述了基于机器学习的文本自动分类所涉及的相关问题及解决方法,并提出了当前该领域面临的主要研究问题。 相似文献
9.
郭少友 《现代图书情报技术》2008,24(5):44-49
用词上下文向量来表达文本集内一个词语与其他词语之间的上下文关系,并在词上下文向量的基础上生成分类器中所有类别的类别特征向量,以及待分类文本的特征向量,最后由分类器给出待分类文本的所属类别。实验显示,在类别特征向量和文本向量中融入词语上下文关系有助于改善文本分类效果。 相似文献
10.
马芳 《现代图书情报技术》2011,(12):58-63
为减少人工分类的不确定性和分类错误,将文本分类技术引入专利自动分类系统,采用径向基函数神经网络(RBFNN)算法完成专利文本的训练和分类,并进行相关测试分析。实验结果表明,采用RBFNN分类器在专利文本自动分类中具有较理想的性能,测试平均F1值在70%以上。 相似文献
11.
介绍跨库检索和粗糙集的基本概念,提出将粗糙集理论引入跨库检索系统中来构建基于粗糙集的跨库检索系统模型的方法,并对该模型对结果集的处理进行重点论述。实验结果表明,跨库检索系统的返回结果可以按照查询的相似度高低排序,以提高用户查询的准确率和有效性。 相似文献
12.
本文开展了基于混合深度信念网络的多类文本表示与分类方法的研究,以解决传统的Bag-of-Words(BOW)表示方法忽略文本语义信息、特征提取存在高维度高稀疏的问题。文章基于文本关键字,针对多类的分类任务(如新闻文本和生物医学文本),以关键字的词向量表示作为文本输入,同时结合深度信念网络(Deep Belief Network,DBN)和深度玻尔兹曼机网络(Deep Boltzmann Machine, DBM),设计了一种混合深度信念网络(Hybrid Deep Belief Network,HDBN)模型。文本分类和文本检索的实验结果表明,基于词向量嵌入的深度学习模型在性能上优于传统方法。此外,通过二维空间可视化实验,由HDBN模型提取的高层文本表示具有高内聚低耦合的特点。 相似文献
13.
基于粗集理论和神经网络结合的数据挖掘新方法 总被引:12,自引:1,他引:12
本文提出了一种基于粗集理论和神经网络的数据挖掘新方法。首先利用粗集理论对原始数据进行一致性属性约简 ,然后使用神经网络对数据进行学习和预测 ,并同时完成属性的不一致约简 ,最后再由粗集对神经网络中的知识进行规则抽取。该方法充分融合了粗集理论强大的属性约简、规则生成能力和神经网络优良的分类、容错能力。实验表明 ,该方法快速有效 ,生成规则简单准确 ,具有良好的鲁棒性。 相似文献
14.
一种基于ART-2神经网络的案例检索方法 总被引:3,自引:0,他引:3
检索是基于案例推理(CBR)系统中的关键技术,本文把ART神经网络与案例多级索引技术结合起来,提出一种两级ART网络结构模型,为大型案例库建立了案例分类及检索模型,实现案例动态聚类与从类型到具体案例的索引,增强了系统的自学习、自适应能力,大大提高了案例分类和检索的效率。 相似文献
15.
16.
[目的/意义]微博评论情感分类模型可以为相关舆情监管部门正确管控话题事件的发展状况和舆情提供一定的指导作用。[方法/过程]基于字词向量的多尺度卷积神经网络,运用多尺度卷积核改善微博评论中上下文信息有限的条件制约,构建基于字词向量的多尺度卷积神经网络微博评论情感分类模型;通过爬取"微博热搜整改"数据,对模型的可行性和优越性进行验证。[结果/结论]验证结果表明基于字词向量的多尺度卷积神经网络在微博舆情等上下文信息有限的短文本分类任务中表现良好。本文在理论层面为微博舆情情感分类提供了更为准确的情感分类理论模型及分类方法,在实践层面可以更好地指导舆情监管部门对舆情的情感倾向进行更好的引导和监管。 相似文献
17.
18.
目前协同过滤被广泛应用于数字图书馆、电子商务等领域的个性化服务系统.最近邻算法则是最早提出和最主要的协同过滤推荐算法,但用户评分数据稀疏性严重影响推荐质量.针对上述问题,提出了一种基于Rough集理论的最近邻协同过滤算法,以用户评分项并集作为用户相似性计算基础,并将非目标用户区分为无推荐能力和有推荐能力两种类型;对于无推荐能力用户不再计算用户相似性以改善推荐实时性,对于有推荐能力用户则提出一种基于Rough集理论的评分预测方法来填补用户评分项并集中的缺失值,从而降低数据稀疏性.实验结果表明新算法能有效提高推荐质量. 相似文献
19.