首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study investigated fourth graders’ self‐generated analogies, that is, own analogies giving self‐explanations — opposed to analogies provided by a teacher — and the effects of their collaborative reasoning and arguing over these analogies on individual understanding of three scientific phenomena concerning air pressure. At the beginning the children were individually asked to give their own explanations, explicitly encouraged to think of something similar which could help them to understand better what they had experienced. Then, divided in small groups they were asked to compare their accounts to collabora‐tively reach a shared explanation of each phenomenon. At the end, the children were again individually asked to give their explanations. The data underwent both a qualitative and quantitative analysis. The first showed that the children, on the basis of their alternative representations of what air could do, produced and used their own analogies as self‐explanations both to learn the new material and communicate their understanding to others. Moreover, the analysis of the collaborative reasoning and arguing developed in small group discussions revealed that through steps of critical opposition and co‐construction, the learners negotiated and renegotiated meanings and ideas to share a new common knowledge based on the recognition of more appropriate analogies supporting more advanced explanations. The quantitative analysis showed that socio‐cognitive interaction in small groups was fruitful as the children significantly progressed on an individual plane in giving their own explanations of each phenomenon as well as in recognizing the similarities between the three phenomena. In addition, the qualitative data showed evidence that the children were able to express metacognitive awareness of their conceptual growth. Finally, educational implications have been drawn.  相似文献   

2.
Use of self-generated analogies has been proposed as a method for students to learn about a new subject by reference to what they previously know, in line with a constructivist perspective on learning and a resource perspective on conceptual change. We report on a group exercise on using completion problems in combination with self-generated analogies to make sense of two thermodynamic processes. The participants (N = 8) were preservice physics teacher students at the fourth year of the teacher education program. The students experienced challenges in accounting for the constant entropy in reversible, adiabatic expansion of an ideal gas and the constant temperature in free, adiabatic expansion of an ideal gas. These challenges were found to be grounded in the students’ intuitive understanding of the phenomena. In order to come to terms with the constant entropy in the first process, the students developed idiosyncratic explanations, but these could by properly adjusted given suitable scaffolding. In contrast, the students by themselves managed to make sense of the constant temperature in free expansion, by use of microscopic explanatory models. As a conclusion, self-generated analogies were found to provide a useful approach to identifying challenges to understanding among students, but also for the students to come to terms with these challenges. The results are discussed against a background of different perspectives on the issue of conceptual change in science education.  相似文献   

3.

This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students’ reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  相似文献   

4.
5.

Analogical reasoning is increasingly recognized as an important instrument for promoting conceptual change in science learning. This study characterized students' and physicians' spontaneous use of analogies in reasoning about concepts related to the mechanical properties of cardiovascular physiology. The analogies were made in response to questions at different levels of abstraction from basic physiology to clinical problems. The results indicate that analogies generated by subjects facilitated explanations in a number of ways. These include creating coherent representations in novel situations, bridging gaps in understanding, and triggering associations which result in modified explanations. Subjects at different levels of expertise used analogies differently. The more expert subjects used analogies to facilitate articulation and communication; that is, to illustrate and expand on their explanations. Novices and advanced medical students used more between‐domain analogies to explain all categories of questions. This is less evident in physicians' responses to pathophysiological and clinical problems. The paper discusses ways in which analogies can be used productively, and identifies factors that can lead to a counter‐productive use of analogies resulting in misconceptions and erroneous explanations.  相似文献   

6.
This study aims to characterize a group of students’ preliminary oral explanations of a scientific phenomenon produced as part of their learning process. The students were encouraged to use their own wordings to test out their own interpretation of observations when conducting practical activities. They presented their explanations orally in the whole class after having discussed and written down an explanation in a small group. The data consists of transcribed video recordings of the presented explanations, observation notes, and interviews. A genre perspective was used to characterize the students’ explanations together with analysis of the students use of scientific terms, gestures, and the language markers “sort of” and “like.” Based on the analysis we argue to separate between event-focused explanations, where the students describe how objects move, and object-focused explanations, where the students describe object properties and interactions. The first type uses observable events and few scientific terms, while the latter contains object properties and tentative use of scientific terms. Both types are accompanied by an extensive use of language markers and gestures. A third category, term-focused explanations, is used when the students only provide superficial explanations by expressing scientific terms. Here, the students’ use of language markers and gestures are low. The analyses shows how students’ explanations can be understood as tentative attempts to build on their current understanding and observations while trying to reach out for a deeper and scientific way of identifying observations and building explanations and new ways of talking.  相似文献   

7.
This research investigated the sources of explanations and understanding of natural phenomena in terms of the students’ cultural and school science experiences. The first phase involved interviews with eight village elders that probed their explanations and understanding of natural phenomena. The second phase involved the design, development and administration of two questionnaires on natural phenomena to 179 students in a rural boarding high school in Papua New Guinea (PNG). Most village elders gave explanations of many of the phenomena in terms of spirits, spells, magic, religion, and personal experiences. Most school-aged students choose scientific explanations of natural phenomena in terms of what they had learned in school or from personal experiences. However, many choose explanations of the same phenomena about spirits, spells and magic that came from the village, family or home. The study revealed that students’ ideas about natural phenomena are strongly governed and controlled by their school science knowledge in the school setting. It is likely that their own traditional knowledge cannot be identified in a school setting but that questionnaires in the students’ local language be given to students in their villages (as opposed to school). In addition, so as not to diminish the value of this traditional knowledge, science education programs are needed that are able to consider and harmonise traditional knowledge with school science.  相似文献   

8.
9.
The problem addressed in the study was whether 10‐ and 11‐year‐old children, collaborating within a computer‐supported classroom, could engage in progressive inquiry that exhibits an essential principal feature of mature scientific inquiry: namely, engagement in increasingly deep levels of explanation. Technical infrastructure for the study was provided by the Computer‐Supported Intentional Learning Environment (CSILE). The study was carried out by qualitatively analyzing written notes logged by 28 Grade 5/6 students to CSILE's database. Results of the study indicated that with teacher guidance, students were able to produce meaningful intuitive explanations about biological phenomena, guide this process by pursuing their own research questions, and engage in constructive peer interaction that helped them go beyond their intuitive explanations and toward theoretical scientific explanations. Expert evaluations by three widely recognized philosophers of science confirmed the progressive nature of students' inquiry. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 1072–1088, 2003  相似文献   

10.
Issues regarding scientific explanation have been of interest to philosophers from Pre-Socratic times. The notion of scientific explanation is of interest not only to philosophers, but also to science educators as is clearly evident in the emphasis given to K-12 students' construction of explanations in current national science education reform efforts. Nonetheless, there is a dearth of research on conceptualizing explanation in science education. Using a philosophically guided framework—the Nature of Scientific Explanation (NOSE) framework—the study aims to elucidate and compare college freshmen science students', secondary science teachers', and practicing scientists' scientific explanations and their views of scientific explanations. In particular, this study aims to: (1) analyze students', teachers', and scientists' scientific explanations; (2) explore the nuances about how freshman students, science teachers, and practicing scientists construct explanations; and (3) elucidate the criteria that participants use in analyzing scientific explanations. In two separate interviews, participants first constructed explanations of everyday scientific phenomena and then provided feedback on the explanations constructed by other participants. Major findings showed that, when analyzed using NOSE framework, participant scientists did significantly “better” than teachers and students. Our analysis revealed that scientists, teachers, and students share a lot of similarities in how they construct their explanations in science. However, they differ in some key dimensions. The present study highlighted the need articulated by many researchers in science education to understand additional aspects specific to scientific explanation. The present findings provide an initial analytical framework for examining students' and science teachers' scientific explanations.  相似文献   

11.
We investigate how students connect explanations and arguments from evidence about plant growth and metabolism—two key practices described by the Next Generation Science Standards. This study reports analyses of interviews with 22 middle and high school students postinstruction, focusing on how their sense-making strategies led them to interpret—or misinterpret—scientific explanations and arguments from evidence. The principles of conservation of matter and energy can provide a framework for making sense of phenomena, but our results show that some students reasoned about plant growth as an action enabled by water, air, sunlight, and soil rather than a process of matter and energy transformation. These students reinterpreted the hypotheses and results of standard investigations of plant growth, such as van Helmont''s experiment, to match their own understanding of how plants grow. Only the more advanced students consistently interpreted mass changes in plants or soil as evidence of movement of matter. We also observed that a higher degree of scaffolding during some of the interview questions allowed mid-level students to improve their responses. We describe our progress and challenges developing teaching materials with scaffolding to improve students’ understanding of plant growth and metabolism.  相似文献   

12.
13.
Analogies can play a relevant role in students’ learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students’ prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers’ content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers’ knowledge about analogies and their ability to perform analogical reasoning.  相似文献   

14.

We examine third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. A range of scientific models are available to explain these phenomena. However, explanations of these phenomena tend not to be used as exemplars of scientific models within undergraduate physics education. The student sample is drawn from six universities in UK and Sweden. These students have difficulties in providing appropriate explanations for the phenomena. Many students draw upon the Bohr model of isolated atoms when explaining light emission of metals. The students tend not to recognize that atoms in metals interact to give an electronic structure very different from that of the isolated atom. Few students use a single model consistently in their explanations of these related phenomena. Rather, students' use of models is sensitive to the context in which each phenomenon is presented to them.  相似文献   

15.
16.
Discussion of the need for an understanding of the philosophy of science to inform classroom practice is mostly directed at clarifying the nature of science, the history of science, the nature of scientific evidence, and the nature of scientific method for curriculum developers and teachers. The discussion assumes no input from pupils. The constructivist perspective, however, assumes that pupils do not come to lessons with blank minds. What insights and questions do students bring to lessons about issues relevant to the philosophy and history of science? Can these be used to develop understanding? Classroom discussions about the energy concept imply that students have valuable ideas and questions related to the exploration of philosophical issues. Rather than developing curricula to tell students about the philosophy and history of science, this paper argues for exploration of student’s ideas and questions when abstract concepts are being discussed in the classroom.  相似文献   

17.
The purpose of this study was to explore how some university biology majors in Beirut, Lebanon, accommodate the theory of biological evolution with their existing religious beliefs. Sixty-two students enrolled in a required senior biology seminar responded to open-ended questions that addressed (a) their understanding of the theory of evolution, (b) their perception of conflict between this theory and religion, and (c) whether the theory of evolution clashed with their own beliefs about the world. Based on their responses, 15 students were selected for an in-depth exploration of their written responses. Students' answers clustered under 1 of 4 main positions: for evolution, against evolution, compromise, and neutral. The authors suggest that teaching students about the nature of scientific facts, theories, and evidence is more likely to enhance understanding of evolutionary theory if students are given the opportunity to discuss their values and beliefs in relation to scientific knowledge. © 1997 John Wiley & Sons, Inc. J Res Sci Teach 34: 429–445, 1997.  相似文献   

18.
It is considered important for students to participate in scientific practices to develop a deeper understanding of scientific ideas. Supporting students, however, in knowing and understanding the natural world in connection with generating and evaluating scientific evidence and explanations is not easy. In addition, writing in science can help students to understand such connections as they communicate what they know and how they know it. Although tools such as vee-maps can scaffold students?? efforts to design investigations, we know less about how these tools support students in connecting scientific ideas with the evidence they are generating, how these connections develop over time, or how writing can be used to encourage such connections. In this study, we explored students?? developing ability to reason scientifically by examining the relationship between students?? understanding of scientific phenomena and their understanding of how to generate and evaluate evidence for their ideas in writing. Three high school classes completed three investigations. One class used vee-mapping each time, one used vee-mapping once, and one did not use vee-mapping. Students?? maps and written reports were rated for understanding of relevant science procedural and conceptual ideas. Comparisons between groups and over time indicate a positive relationship between improved procedural and conceptual understanding. Findings also indicate that improved procedural understanding preceded improved conceptual understanding, and thus, multiple experiences were needed for students to connect evidence and explanation for science phenomena.  相似文献   

19.
This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry‐oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi‐participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.  相似文献   

20.
Current science education reforms highlight the importance of students making sense of scientific ideas. While research has studied how to support sensemaking in classrooms, we still know very little about what drives students to pursue and persist in it on their own. In this article, we use a set of parallel case studies of undergraduate students discussing introductory physics to show how certain student-generated, vexing questions both initiate and sustain students' sensemaking processes. We examine affective and linguistic markers in student discourse in paired-clinical interviews to demonstrate both of these functions of vexing questions and detail their role in the explanations students construct. We conclude by discussing the implications of this analysis both for supporting sensemaking in classrooms and for studying it in research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号