首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
齐次线性方程组a_1x+b_1y+c_1z=0a_2x+b_2y+c_2z=0(*)a_3x+b_3y+c_3z=0的系数行列式是D=a_1 b_1 c_1a_2 b_2 c_2a_3 b_3 c_3显然,当 D0时,方程组(*)有唯一解,即x=y=z=0,或叫做零解.但当 D=0时,方程组(*)除零解外还有无穷多个非零解.关于方程组(*)有非零解的充要条件有下述定理:定理:齐次线性方程组(*)有非零解的  相似文献   

2.
<正>课本习题(《普通高中课程标准实验教科书》必修2第88页"探究·拓展"15)已知两条直线a_1x+b_1y+1=0和a_2x+b_2y+1=0都过点A(1,2),求过两点P_1(a_1,b_1),P2(a_2,b_2)的直线的方程.解因为直线a_1x+b_1y+1=0,a_2x+b_2y+1=0都过点A(1,2),所以a_1+2b_1+1=0,a_2+2b_2+1=0.由于P_1(a1,b1),P_2(a_2,b_2)均适合方程x+2y+1=0,且两点确定一条直  相似文献   

3.
许多刊物都载文指出:两个一元二次方程 a_1x~2+b_1x+c_1=0,a_2x~2+b_2x+c_2=0(a_1a_2≠0)有一公共根条件是:当 a_1b_2≠a_2b_1时,(a_1c_2-a_2c_1)~2=(a_1b_2-a_2b_1)(b_1c_2-b_2c_1);当 a_1b_2=a_2b_1时,a_1:b_1:c_1=a_2:b_2:c_2有两个公共根.应用这些条件虽可解决一切公共根问题,但较难记忆,有时会带来较繁的运算.本文再提供另外三种思考方法.  相似文献   

4.
对于二次函y_1(x)=a_1x~2+b_1x+c_1与y_2(x)=a_2x~2+b_2x+c_2,(a_1.a_2(/)0),能否找到常数λ,使叠加得到的y_0(x)=y_1(x)+λy_2(x)的函数值不改变符号(定正或定负)? 下面用纯粹初等的方法进行探索: 因y_0(x)=a_1[x~2+b_1/a_1x+c_1/a_1+λa_2/a_1(x~2+b_2/a_2x+c_2/a_2)],若记b_/a_1=b、c_/a_1=c、λa_2/a_1=μ、 b_2/a_2=b_0、c_2/a_2=c_0,即考查y(x)=x~2+bx+c+μ(x~2+b_0x+c_0) 仍记为y(x)=y_1(x)+μy_2(x)〕在哪些情况下可以选取到实数μ使其定号。  相似文献   

5.
形如f(x)=a_1x~2 b_1x c_1±(a_2x~2 b_2x c_2)~(1/2)这类无理函数与圆锥曲线有密切联系,本文介绍借助圆锥曲线求其值域的两种方法。 1图象法 对于函数f(x)=a_1x~2 b_1x c_1±(a_2x~2 b_2x c_2)~(1/2)(a_1,b_1,c_1,a_2,b_2,c_2为常数,且a_2≠0),若视f(x)为参数m,则原函数式为a_1x~2 b_1x c_1-m=±(a_2x~2 b_2x c_2)~(1/2),令y=a_1x~2 b_1x c_1-m和y=±(a_2x~2 b_2x c_2)~(1/2)的图象分别为T_1,T_2,则当a_1=0时。T_1为直线,当a_1≠0时T_1为抛物线,由y=  相似文献   

6.
我们知道,关于多元二次多项式的因式分解,常常利用待定系数法来解决,但这种方法需解若干个方程组成的方程组,工作量很大。若利用一元二次三项式的因式分解来解决多元二次多项式的因式分解,就可收到事半功倍之效果。 [例1] 把f(x,y)=x~2+3xy+2y~2+4x+5y+3因式分解。分析:若f(x,y)能分解,则它必分解为。f(x,y)=(a_1x+b_1y+c_1)(a_2x+b_2y+c_2)之形式。事实上,就是确定a_1,b_1,c_1,a_2,b_2,c_2。关于对它们的具体确定可在下面过程中来完成。至于原理的推证,请读者自行完成。解:分别分解关于x,y的一元二次三项式。 x~2+4x+3=(x+1)(x+3)……① 2y~2+5y+3=(y+1)(2y+3)……②通过①、②可确定a_1=1,b_1=1,c_1=1,a_2=1,  相似文献   

7.
(一)求有理分式函数y=(a_1x~2 +b_1x+c_1)/(a_2x~2+b_2x+c_2) 型的值域时,如果分子、分母没有公因式时,就可变形式形为 (a_2yg-a_1)x~2+(b_2y-b_1)x+c_2y-c_1=0(*) 设a_2y-a_1≠0时,方程*的判别式Δ≥0的解集为M,还不能确认集合M就是原函数的值域,因为当y=a_1/a_2时,方程*的二次项系数为零,此时必须考察y=a_1/a_2时,方程*是否有实数解,如果没有实数解,则所求的值域就是M,如果有实数解;所求的值域为  相似文献   

8.
<正>在解析几何中,我们常常利用曲线束解题,如过两相交直线交点的直线束,过两圆相交的交点的圆束,等等,其最大的作用是简化运算.下面谈谈二次曲线束在解几方面的应用.一、知识梳理二次曲线方程ax2+bxy+cy2+bxy+cy2+dx+ey+f=0,根据参数的不同值,可表示成椭圆、双曲线、抛物线等二次曲线.其实除了上述曲线之外,还可表示成两条直线.形如(a_1x+b_1y+c_1)(a_2x+b_2y+c_2)=0的方程也为二元二次方程,可看成退化的二次曲线.  相似文献   

9.
关于齐次微分方程的一些推广   总被引:3,自引:0,他引:3  
齐次微分方程dy/dx=f(y/x)是用途颇广且极易用初等积分方法求解的微分方程,而且从教科书上我们还知道形如y'=f(a_1x b_1y/a_2x b_2y)的方程及形如y'=f(a_1x b_1y c_1/a_2x b_2y c_2)(a_1/a_2≠b_1/b_2)的方程通过适当的变形和变换后亦可化为齐次微分方程求解。其后两种方程也就是齐次方程的推广。本文的目的是将齐次方程进一步推广,以达到拓宽其应用的目的。  相似文献   

10.
对形如y=((a_1)x~2+b_1x+c_1)/((a_2x~2+b_2x+c_2))的有理分式函数的值域,我们可以把它化归为关于x的一元二次方程,然后用根的判别式探求。如果用解几的思想将函数改写成 k=((参数a的形式乙-常数乙))/((参数a的形式甲-常数甲))的形式,把问题化归为求已知点M(常数甲,常数乙)与已知曲线x=参数a的形式甲 y=参数a的形式乙上的点的联线的最大斜率和最小斜率,则更能加深学生对代数曲线的理解,起到数形结合的作用。例1 求函数y=((-x+5))/((2x-3))的值域。分析:改写上式为k=((-a-(-5)))/((2a-3)),求函数的  相似文献   

11.
分解6x~2 (3 3~(1/2)-10)xy-5 3~(1/2)y~2 7x (2 3~(1/2)-5)y 2(1)的因式是一道较难的题目,但计算(2x 3~(1/2)y 1)(3x-5y 2)却是很容易的。这使我们产生一种想法:若能通过某一方法猜出(1)式的因式,然后再通过逆运算验证它是正确的,那就好了。下面介绍一种猜测方法。若ax~2 bxy cy~2 dx ey f(2)能分解成二个一次因式之积(a_1x b_1y c_1)(a_2x b_2y c_2)那么令y=0代入得ax~2 dx f=(a_1x c_1)(a_2x c_2)令y=1代入得ax~2 (b d)x (c e f)  相似文献   

12.
用方程的思想求分式函数的值域   总被引:1,自引:0,他引:1  
求形如下列的有理分式函数的值域 y=(a_1x~2+b_1x+c_1)/(a_2x~2+b_2x+c_2)(x∈D,D为定义域) (1)一般是把原函数式化成关于x的一元二次方程φ(y)x~2+ψ(y)x+g(y)=0 (*)(其中φ(y)、ψ(y)、g(y)是关于y的表达式),根据方程(*)的判别式△=ψ~2(y)-4φ(y)g(y)≥0求出y的取值范围,即得原函数的值域,这就是所谓的“判别式法”。大家知道,用上述方法求出的结果是不一定可靠的,可能会得出错误的结论。就方法本身而言,也使人疑虑:为什么能这样求?在  相似文献   

13.
本文给出不等式 k_1<(a_1x+b_1)/(a_2x+b_2)相似文献   

14.
本文给出下面两类绝对值方程的一种简便解法.定理(1) |(a_1x~2 b_1x c_1) (a_2x~2 b_2x c_2)|=|a_1x~2 b_1x c_1| |a_2x~2 b_2x c_2|(?)(a_1x~2 b_1x c_1)  相似文献   

15.
<正>解答平面解析几何题往往运算量较大,而有时用平面几何知识却能减少运算量,下面举例说明这一解题方法.例1设直线l_1:a_1(x+1)+b_1y=0,l_2:a_2(x-1)+b_2y=0满足a_1a_2+b_1b_2=0,求l_1与l_2的交点P的轨迹方程.分析本题中有四个参数a_1,a_2,b_1,b_2,若直接求解,求出交点P的坐标后,再消去这四个参数,得出所求轨迹方程,消元技巧强,运算量大.而充分挖掘题  相似文献   

16.
在统编教材数学第三册复习题二中涉及到了函数 y=(a_1x~2 b_1x c_1)/(a_2x~2 b_2x c_2),其中 a_1、a_2不同时为零(以后不再说明),求极值的问题。方法是求 y 的值域,即先将  相似文献   

17.
一类五次系统的中心焦点判定   总被引:1,自引:0,他引:1  
给出五次系统x=λx-y+yR_2+xR_4,y=x+λy-xR_2+yR_4,R_2=b_1x~2++b_2xy+B_3y~2,R_4=a_4x~4+a_2x~3y+a_1xy~3+a_0y~4,在O(0,0)的各阶焦点量和O为中心的充要条件.  相似文献   

18.
近年来,国内外数学竞赛中经常出现两个一元二次方程有公共根的一类问题。本文将探讨两个一元二次方程的系数满足什么条件时才有公共根(以下的讨论是在复数域中进行)。为此,我们给出定理两个一元二次方程 a_1x~2+b_1x+c_1=0 (Ⅰ)和a_2x~2+b_2x+c_2=0 (Ⅱ)有一个公共根的充分必要条件是证明设x_1和x_2是方程(Ⅰ)的两个根,  相似文献   

19.
<正>解答平面解析几何题往往运算量较大,而有时用平面几何知识却能减少运算量.下面举例说明这一解题方法.例1 设直线l_1:a_1(x+1)+b_1y=0,l_2:a_2(x-1)+b_2y=0,满足a_1a_2+b_1b_2=0,求l_1与l_2交点P的轨迹方程.分析本题中有四个参数,若直接求出交点P的坐标,再消去参数得出所求轨迹方程,技巧强,运算量大.而充分挖掘题目的隐含条件,运用平面几何知识,可获得简解.解由条件可知,直线l_1、l_2分别过定点A(  相似文献   

20.
求型如 y=a_1sinx b_1cosx c_1/a_2sinx b_2cosx c_2的函数值域,常规解法一般有两种,一是把原函数变形为 sin(x (?))=F(y)型,然后利用三角函数的有界性解不等式|F(y)|≤1(通常为无理不等式);二是利用万能公式变形转化为关于 tan(x/2)的二次方程,利用二次方程的判别式求解.这两种解法固然可行,但过程繁琐、冗长.下面介绍一种新的方法——三角方程“判别式”法,首先我们证明一个定理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号