首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
<正>某些非一元二次方程的问题,如果能抓住特征,那么可以通过构造一元二次方程来解决,例说如下.一、利用已知等式构造一元二次方程例1若a,b,c为实数,且a2+b2+c2-ab-bc-ca=0,求证:a=b=c.证明由已知等式,可构造关于c的一元二次方程c2-(a+b)c+(a2+b2-ab)=0.∵c为实数,∴Δ=[-(a+b)]2-4(a2+b2-ab)  相似文献   

2.
一元二次方程是初中数学的重要内容,也是中考的热点.下面以2013年中考题为例,说明一元二次方程中常用的数学思想. 一、整体思想 例1 (2013年黔西南卷)已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是____. 解析:∵x=1是一元二次方程x2+ax+b=0的一个根, ∴12+a+b=0,∴a+b=-1, ∴.a2+b2+2ab=(a+b)2=(-1)2=1. 温馨小提示:本题主要考查一元二次方程解的概念,把根直接代入方程,即可求得a+b的值,然后整体代入求出代数式的值.  相似文献   

3.
因为a、b是一元二次方程x~3-(a b)x ab=0的两个根,设S_0=a~0 b~0,S_1=a b, S_2=a~2 b~2,S_2-(a b)S_1 abS_0=0 S_3=a~3 b~3,S_3-(a b)S_2 abS_0=0 S_n=a~n b~n,S_n-(a b)S_(n-1) abS_(n-2)=0 所以当n≥2时,有递推式,S_n-(a b)S_(n-1) abS_(n-2)=0 (*) 因为递推式由一元二次方程推出,结果又与一元二次方程极其类似,所以它与一元二次方程一样用途较大,下举数例说明。例1 若m~2=m 1,n~2=n 1,且m≠n,则m~5 n~5=____(江苏省第四届初中数学竞赛试题)  相似文献   

4.
一、填空题 1.若方程(a-1)x2a2 a-1-5x=-6是一元二次方程,则a=__。 2.一元二次方程ax2 bx c=0(a≠0)有一个根是1,则a b c=__. 3.一元二次方程2x(kx-4)-x2 6=0没有实数根,则k的最小整数值是__.  相似文献   

5.
实系数一元二次方程ax~2+bx+c=0(a≠0)有性质: (1)若a+b+c=0,则方程的两根为x_1=1,x_2=c/a;反之,若一根为1,则a+b+c=0。  相似文献   

6.
解一元二次方程及判断一元二次方程是否有解,是一元二次方程一章的两个重点,除要掌握基本方法外,适当的掌握一些常见的技巧可以提高学习的效率。一、解法选择技巧解一元二次方程的基本方法有:直接开平方法、配方法、因式分解法、公式法,如何快速选择方法,有一定的技巧.对于一元二次方程一般式ax~2+bx+c=0(a≠0,a、b、c是常数),其中a≠0,但b、c可以为0,因此方程ax~2=0,ax~2+bx=0,ax~2+c=0,这些形式的方程因为缺项,也叫不完全的一元二次方程,是一元二次方程的特殊形式,因此解法也就会有不同的技巧.对于一元二次方程ax~2+bx+c=0中的常数项c=  相似文献   

7.
付宁千 《初中生》2003,(30):30-33
一元二次方程是初中数学的重要内容,在数学竞赛中经常出现.它是解决高次方程和其他方程的基础.有些从表面上看不是一元二次方程的问题,通过变形等手段,可以构造一元二次方程来解决.下面以竞赛题为例,介绍构造一元二次方程的4种方法.一、根据方程根的定义构造例1若a·b≠1,且有5a2+2001a+9=0及9b2+2001b+5=0,则ab的值是().(A)95(B)59(C)-20015(D)-20019(2001年全国初中数学竞赛题)解:5a2+2001a+9=0.(1)因为b=0不是方程9b2+2001b+5=0的根,故可得5·(1b)2+2001·1b+9=0.(2)由(1)、(2)和方程根的定义可知a、1b都是方程5x2+2001x+9=0的根,31200…  相似文献   

8.
设一元二次方程ax~2+bx+c=0(a≠0)有二实根x_1,x_2,易知有如下两条性质: 性质1.若a+b+c=0,则x_1=1,x_2=c/a;反之,若x_1=1,x_2=c/a,则a+b+c=0.  相似文献   

9.
刘建华 《考试周刊》2008,(52):59-59
对于整系数一元二次方程ax2+bx+c=0(a≠0)(1)方程有有理数根的条件是△=b2-4ac为一有理数的平方;(2)若a、b、c为奇数,则方程无整数根;(3)若a、b为偶数,而c是奇数,则方程无整数根。  相似文献   

10.
<正> 性质若a+b+c=0,则x=1是关于x的一元二次方程ax2+bx+c=0的根;若a-b+c=0,则x=-1是关于x的一元二次方程ax2+bx+c=0的根. 运用一元二次方程的根的定义不难证明这一性质.而灵活运用  相似文献   

11.
一元二次方程是中学数学的重要内容 ,因此 ,有关一元二次方程的问题一直受到各级各类竞赛的青睐 .本文通过一些不同形式的例题 ,介绍解答一元二次方程公共根问题的基本策略 .1 消去二次项例 1 若两个方程 x2 +ax+b=0和 x2+bx+a=0只有一个公共根 ,则 (  ) .(A) a=b     (B) a+b=0(C) a+b=1(D) a+b=- 1(2 0 0 2年江苏省初中数学竞赛题 )解 设两方程的公共根为 x0 ,则x20 +ax0 +b=0 ,x20 +bx0 +a=0 .121- 2 ,得 (a- b) (x0 - 1) =0 .∵两方程只有一个公共根 ,∴ a≠ b.从而x0 =1为两方程的公共根 ,代入 1,得 1+a+b= 0 ,即 a+b=- 1,选…  相似文献   

12.
一元二次方程是初中数学的重要内容.巧妙地构造一元二次方程,可以解决许多难度较大的问题.现以几道典型的竞赛题为例,介绍构造一元二次方程的常用方法.一、应用方程根的定义例1若ab≠1,且有5a2+2001a+9=0,9b2+2001b+5=0,则ba的值是().(A)95(B)59(C)-20501(D)-20901(2001年全国初中数学联赛试题)解:显然b≠0,由9b2+2001b+5=0,得5b1#$2+2001·1b+9=0.又5a2+2001·a+9=0,由ab≠1知a≠b1,所以a、1b是方程5x2+2001x+9=0的两个根.由根与系数的关系知a·b1=95,即ba=59,选(B).二、应用根的判别式例2已知41(b-c)2=(a-b)(c-a),且a≠0,则b+a c=.(1999…  相似文献   

13.
△ =b2 - 4ac叫做一元二次方程 ax2 + bx+ c=0(a≠ 0 )的根的判别式。灵活应用它 ,不仅可以解答一些与一元二次方程有关的问题 ,一些非一元二次方程问题也可获得巧妙解答。一、与一元二次方程有关的问题例 1 若方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,则方程 x2 + ax+ b=0的两根分别是 (   )(A) 0 ,3;(B) 0 ,- 3;(C) 1,4 ;(D) 1。解 :由方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,∴△ =(a- 3) 2 - 4(- 3a- b2 ) - 0 ,∴ (a+ 3) 2 + 4 b2 =0。∵ (a+ 3) 2≥ 0 ,4 b2≥ 0 ,∴ a=- 3,b=0。这时 ,要求的方程即为 x2 - 3x=0∴ x1=0 ,x2 …  相似文献   

14.
数学竞赛中的某些求值问题,若先通过构造一元二次方程然后借助一元二次方程的相关知识来解决,往往可以收到快速简捷、出奇制胜的效果.现举例介绍构造一元二次方程求值的几条途径,供参考. 一、利用根的定义构造例1 (1996年四川省初中数学竞赛试题)设a,b是相异二实数,且满足a2=4a+3,b2  相似文献   

15.
周奕生 《初中生》2003,(27):28-29
我叫判别式,外号,是一元二次方程庄园内的常客.我的外貌是=b2-4ac,身上的a、b、c是一元二次方程ax2+bx+c=0(a≠0)的三数,要想在一元二次方程中找到我,首先必须把方程化为一般形式.例如,在一元二次方程12x2+3x=1中,你如果想知道我是多少,必须先把方程化为一般形式12x2+3x-1=0,然后把a=12,b=3,c=-1代入b2-4ac计算便可知=b2-4ac=11.此时若把方程化为x2+6x-2=0,我又摇身一变,变成了=b2-4ac=44.有人对此疑惑不解,怎么一个方程会有两个不同的判别式呢?其实大家不必大惊小怪,我是个虚怀若谷、不计小节的人.你说我是11,还是说我是44,我都会默默地接…  相似文献   

16.
一、一元二次方程及其解的概念。1.关于x的方程(k^2-1)x^k^2-2k-1+x+k=0为一元二次方程,求k的值.2.若a是关于x的方程x^2+bx+a=0的根,且a≠0,求a+b的值.  相似文献   

17.
<正> 性质在一元二次方程ax2+bx+c=0(a≠0)中,若a+b+c=0,则该方程必有一根为1. 证明∵a+b+C=0,且a≠0,∴a=-(b+C). ∴ax2+bx+c=-(b+c)x2+bx+C =-bx2-cx2+bx+c  相似文献   

18.
一元二次方程是初中数学学习的重点.本文给出一元二次方程的两个性质,并举例说明其应用,供同学们学习参考.一、性质性质1:在一元二次方程ax2+bx+c=0 (a≠0)中,若a+b+c=0,则x1=1,x2=ca. 证明:由a+b+c=0,得b=-a-c.将其代入原方程,得ax2+(-a-c)x+c=0,即(x-1)(ax-c)=0.因此,x1=1,x2=ca. 下面是一个类似的性质:性质2:在一元二次方程ax2+bx+c=0 (a≠0)中,若b=a+c,则x1=-1,x2=-ca.(证明略)二、应用举例例1解下列方程:(1)8x2+15x-23=0;(2)5x2+11x+6=0. 解:(1)∵8+15-23=0,∴x1=1,x2=-238.(2)∵11=5+6,∴x1=-1,x2=-6…  相似文献   

19.
构造一元二次方程解题是一种常用的解题方法,这种方法的关键是根据题目中的一些条件来构造一元二次方程,从而达到将问题化难为易、化繁为简的目的.下面举例说明:一、利用韦达定理的逆定理构造一元二次方程当题目中含有x1 x2=p、x1x2=q时,则可以利用韦达定理的逆定理构造一元二次方程来解决.例1已知a、b、c、d为实数,且满足2c-a=b,c2 14d2=ab,求证:a=b.证明:由已知a b=2c,ab=c2 14d2得a、b是方程x2-2cx c2 14d2=0的两根.∵a、b、c、d为实数,∴Δ=4c2-4(c2 14d2)=-d2≥0.∴d2≤0.又因为d2≥0,d2=0,即△=0.∴方程有两个相等实根,即a=b.二、利用…  相似文献   

20.
因为a、b是一元二次方程x~2-(a b)x ab=0的两个根,设S_0=a~0 b~0=2,S_i=a~i b~i,i=1,2,…,n。于是有: S_2-(a b)S_1 abS_0=0 S_3-(a b)S_2 abS_0=0 S_n-(a b)S_(n-1) abS_(n-2)=0 显然当n≥2时,有递推式 S_n-(a b)S_(n-1) abS_(n-2)=0 (*) 因为递推式由一元二次方程推出,结果又与一元二次方程极其类似,所以它与一元二次方程一样有较大用途,下举数例说明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号