首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
数形结合思想就是通过数与形之间的相互转化来解决数学问题,包括以形助数和以数赋形两个方面。利用它可以使复杂问题简单化,抽象问题具体化。华罗庚教授曾说过:"数缺形时少直观,形缺数时难入微。"因此数形结合思想是一种重要的数学思想。而通常我们在教学中用代数知识解决几何问题较多,用几何知识解决代数问题涉及较少,本文就重点举几个用几何图形解决代数问题以渗透数形结合思想的实例,以飨读者。一、用几何图形解决代数式的最小值问题例1已知:x为任意实数,求代数式  相似文献   

2.
正数形结合是重要的数学思想方法之一,对于培养学生的抽象思维能力和形象思维能力具有积极的促进作用。著名数学家华罗庚指出:"数缺形时少直观,形缺数时少入微。"在中学数学教学中,利用数形结合法可将代数与几何问题相互转化,也就是说,几何问题可以用代数语言表示,几何目标可以通过代数方法达到。反过来,几何又给代数问题以几何解释,特别是可以利用几何图形赋予那些抽象的代数问题以直观的"形象"。下面以不等式的代数解法、几何解法和数  相似文献   

3.
数形结合法就是根据题设条件作出所研究问题的有关曲线或有关图形,借助几何图形的直观性得出正确的结论.数形结合法是数学方法中一种非常重要的思想方法.我国著名数学家华罗庚先生说:"数形本是两依倚,数缺形时少直观.形少数时难入微,数形相助双翼飞."这句话形象简练地指出了形和数的密切关系.同样数形结合思想在高考中占有非常重要的地位,其"数’’与"形"结合,相互渗透;把精确的数字与直观的几何图形相结合,使代数问题、几何问题相互转化,使抽象问题变得形象直观.本文从历届的高考题中选择了5道题目,阐述数形结合思想在解高考题中的重要性以及数形结合的妙用.  相似文献   

4.
<正>华罗庚先生曾指出:"数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非".数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质.高考展望:数形结合一直是高考的重点和热点,其"数"与"形"结合,相互渗透,把代数的精确刻画与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使  相似文献   

5.
“数”与“形”是数学殿堂里密不可分的两大柱石,“数缺形时少直观、形缺数时难入微”。若某些代数问题有明显几何意义,则转化为几何图形,适当地运用几何方法,以“形”研究“数”,会使问题直观形象,解法简捷灵活。现结合实例说明:1.在数轴上以“形”解“数”例1.解方程|x+1|+|x-1|=4。分析:初看这是一道纯代数题,通常的解法是分段定出x的取值范围,分类讨论去绝对值符号再解,但这样较费时费力,若利用绝对值的几何意义,则可快捷求解。解:如图1,画数轴,设A(-1),B(1),由绝对值的几何意义,求这个方程的解即是在数轴上找到与点A、B的距离的…  相似文献   

6.
王宇红 《科学教育》2006,12(3):26-28
华罗庚曾说:“数离开形少直观,形离开数难入微。”也就是说利用数形结合的思想,可沟通代数和几何的关系,实现难题巧解。而直角坐标系正是数和形之间的重要桥梁。通过它可以把许多几何问题用数量关系来解决,同样,许多代数问题若能根据问题的结构和特征,转化、构造为解析几何模型,借助于解几中的有关公式、性质、图形特征和位置关系等来探求解法,往往会更加直观和简捷。本文将就构造解析几何模型解决代数问题的几种常见思路进行阐述和整理。1利用定比分点公式解题例1:解不等式12+-3xx≥1解:令y=12+-3xx-1≥0,则有x=14+43y(-311+43y,且y≥0。联…  相似文献   

7.
正在数学知识体系中蕴涵着丰富的数学思想,中学数学主要的思想方法有:一、数形结合数学是研究数量关系和空间形式的科学.因而数学研究总是围绕着数与形进行的."数"就是方程、函数、不等式及表达式,代数中的一切内容;"形"就是图形、图象、曲线等.数形结合的本质是数量关系决定了几何图形的性质,几何图形的性质反映了数量关系.数形结合就是抓住数与形之间的内在联系,以"形"直观地表达数,以"数"精确地研究形.华罗庚曾说:"数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分  相似文献   

8.
<正>数形结合思想在高考中占有非常重要的地位,其"数"与"形"结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。例1若关于x的方程x2+2kx+3k=0的两根都在-1和3之间,求k的取值范围。  相似文献   

9.
<正>数形结合思想就是根据数学问题的条件和所给结论之间的内在联系,通过分析题目的代数意义,找到对应的几何意义,让数量关系和几何图形相结合,用几何图形巧妙解决代数问题。这种方法能把复杂而抽象的代数运算在几何图形中直观地表现出来,能利用几何知识解决复杂的代数运算问题,避免了复杂的推理和计算过程,这  相似文献   

10.
“数”与“形”是数学殿堂里密不可分的两大柱石 ,“‘数’缺‘形’时少直观 ,‘形’少‘数’时难入微” .“数”与“形”的相互转化是中学数学学习与研究中运用广泛、意义深刻的一种思维方法 .若某些代数问题有明显的几何意义 ,则可转化为几何图形 ,适当地运用几何方法 ,以“形”研究“数” ,会使问题直观形象 ,解法简捷灵活 .现结合实例说明 .1 在数轴上以“形”解“数”例 1 实数a、b满足a2 - 2a + 1 + 36 - 1 2a +a2=1 0 - |b + 3| - |b - 2 | .则a2 +b2 的最大值是多少 ?( 1 998,北京市初二数学竞赛 )分析 :初看这是一道纯…  相似文献   

11.
正我国著名数学家华罗庚曾说过:"数形本是相倚依,焉能分作两边飞。数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。几何代数统一体,永远联系莫分离".数形结合,主要指的是数与形之间的一一对应关系。数形结合思想就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过"以形助数"或"以数解形"使复杂问题简单化,抽象问题  相似文献   

12.
数与形是数学中两个最古老而又最基本的对象.正如华罗庚先生所说的:"数形结合干般好".其特征主要体现是将代数问题几何化,即通过图形反映相关的代数关系,从而直观地解决有关的代数问题.一、解含参不等式在解决含有参数的不等式时,由于涉及到参数,往往需要讨论,导致演算过程繁琐冗长.如果题设与几何图形有联系,那么利用数形结合的方法,问题将会简练地得到解决.例1已知a>1,解关于x的不等式ax+1/2>|x-1|.  相似文献   

13.
<正>数形结合思想既是数学学科的重要思想,又是数学研究的常用方法。利用数形结合思想解题就是在解决和几何图形有关的问题时,将图形信息转化成代数信息,利用数量特征,将其转化成代数问题;在解决与数量相关的问题时,根据数量的结构特征,构造出相应的几何图形,即化为几何问题。  相似文献   

14.
数学家华罗庚曾说过:"数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休".数形结合是中学数学的一种重要思想方法,对某些代数问题,通过数中思形,数形结合,借助直观可以迅速、准确地找到解题的途径.对于代数式a/(√)a2+b2,笔者注意到在中学数学有以下三种几何意义:  相似文献   

15.
一、以"形"变"数",借助线段图表达数量关系,揭示本质数是形的抽象概括,形是数的直观表现。华罗庚先生指出,数缺形时少直观。借助几何图形的形象直观,通过"以形助数",从图形的结构直观地发现数量关系,使复杂的问题简单化,抽象的问题具体化。案例:两步计算求一个数百分之几的折扣的实际问题。出示书中超市电器情境图  相似文献   

16.
“以形助数”巧解代数问题   总被引:1,自引:0,他引:1  
数学是研究客观世界的数量关系和空间形式的科学,数和形是数学研究的两个重要方面,在研究过程中,数形结合既是一个重要的数学思想,又是一种常用的数学方法.华罗庚先生曾指出:“数缺形时少直观,形少数时难入微.数形结合百般好,隔裂分家万事休.”数形结合包括“以形助数”和“以数辅形”两个方面本文仅就“以形助数”解决代数问题作粗略的探讨.§1.以形助数解决代数问题的途径1.1通过坐标系.如:直角坐标系中,由sinα-2cosα-1可联想到两点连线的斜率;复平面中|z1-z2|为复数所对应的两点间的距离.1.2转化.把正数a看成距离,a2(或ab)看成面积,a…  相似文献   

17.
"数缺形,少直观;形缺数,难入微",数形结合思想是研究数学的一种重要思想方法,它把数量的精确刻画与空间形式的直观形象相统一,将抽象思维与直观形象有机结合在一起.数形结合通常包括"以形助数"或"以数解形"两个方面,主要表现在运用图形直观解决数量关系、利用数量关系揭示几何图形的性质等.  相似文献   

18.
在解决代数问题时,巧妙的利用数形结合思想,使问题凸现出具体直观的一面,从而能很快的找到突破口,使思路明确化,能快捷的解决问题.数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微”.数形结合,直观又入微,不少精巧的解题方法正是数形结合的产物.  相似文献   

19.
数学是研究现实世界空间形式和数量关系的科学.“数”与“形”是数学发展的内因,是贯穿于数学发展历史长河中的一条主线,并且使数学在实际应用中更加广泛和深入.在17世纪现代数学的开端,笛卡尔创造了直角坐标系,把“解析方法”和“几何方法”有机结合,把“数”与“形”结合起来,这不仅是一种解题方法,更是一种重要数学思想.“数缺形,少直观;形缺数,难入微”,这是华罗庚教授对数形结合思想的深刻、透彻的阐释.数形结合,实际上就是把抽象的数学语言和直观的图形结合起来,使抽象思维和形象思维结合起来,借助图形的特征,把许多抽象的概念和复杂的数量关系直观化、形象化、简单化.而一些几何图形的性质,可借助于数量的计算和分析得以严谨化.在中学数学中,有许多问题,可以结合“几何模型”,架设“数”“形”思维桥梁,将抽象的代数问题给以形象的原型,训练人们思维形象化的思维品质.现就以下几个方面略作探讨.1在函数方面的应用例1函数y=a│x│与y=x+a的图像恰有两个公共点,则实数a的取值范围是().(A)(1,+∞)(B)(-1,1)(C)(-∞,-1]∪[1,+∞)(D)(-∞,-1)∪(1,+∞)提示画出y=a│x│与y=x+a的图像,如图1,...  相似文献   

20.
华罗庚先生曾指出:“数缺形时少直觉,形缺数时难入微,数形结合百般好,隔裂分家万事非.”代数方法的特点是解答过程严密、规范、思路清晰,而几何方法具有直观、形象的优势,以数助形,以形助数,是把许多知识转化为能力的“桥”.其本质就是将抽象的数学语言与直观的几何图形结合起来,使抽象思维和形象思维有效的结合起来,“数形结合”或“形数结合”,从  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号