首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张云霄 《中学教研》2007,(9):47-48,F0003
引理1 (1)若 f(x)为区间[a,b]上的凸函数,对于 x_1,x_2,x_3∈[a,b],满足 x_1相似文献   

2.
引言文[1][2][3]围绕不等式进行了一系列的探讨,得到了不少的结果。本文通过对凸函数的一个性质的讨论,得到了这类问题的一个普遍的结果。一、预备知识定义设f(x)是定义在区间C上的实值函数,若(?)x_1,x_2∈C,(?)α∈(0,1),恒有f(αx_1 (1-α)x_2)≤αf(x_i) (1-α)f(x_2)(1)则称f(x)为区间C上的凸函数。若(?)x_1,x_2∈C,x_1≠x_2,(?)α∈(0,1),恒有f(αx_1 (1-α)x_2)<αf(x_1) (1-α)f(x_2)(2)则称f(x)为区间C上的严格凸函数。  相似文献   

3.
<正>一、单一函数类1.恒成立问题例1已知函数f(x)=ax~3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.(1)求f(x)的单调区间和极大值;(2)证明对任意x_1,x_2∈[-1,1],不等式|f(x_1)-f(x_2)|<4恒成立.分析本题是同一函数的最值问题,只需求出函数f(x)在[-1,1]上的最值(或范  相似文献   

4.
2007年高考广东卷理科第20题:已知a是实数,函数()fx=2ax2 2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.本文给出一种巧解.解:若函数y=f(x)在区间[-1,1]上有零点,则方程2ax2 2x-3-a=0在区间[-1,1]上有解.即方  相似文献   

5.
<正>正弦型函数是每年各地高考必考的内容,常常从单调性、奇偶性、图像平移的角度进行考查。考点一:以单调性为背景例1已知函数f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)在区间[π/6,π/2]上单调递增,且函数值从-2增大到0。若x_1、x_2∈[-π/6,π/2],且f(x_1)=f(x_2),则f(x_1+x_2)=()。  相似文献   

6.
<正>题目若函数f(x)=x2+bx+1在区间[0,2]上有零点,求实数b的取值范围。解法一:方程求根公式法。f(x)=x2+bx+1在区间[0,2]上有零点,求实数b的取值范围。解法一:方程求根公式法。f(x)=x2+bx+1在区间[0,2]上有零点,等价于方程x2+bx+1在区间[0,2]上有零点,等价于方程x2+bx+1=0在[0,2]区间上有解,对于一元二次方程,最容易想到的方法,就是利用方程的求根公式的定义域及判别式的取值情况来求参数的取值范围,需分两种情况进行讨论:  相似文献   

7.
<正>正弦函数是高考的高频考点,其考查方式多以选择或填空题的方式出现,常常从单调性、奇偶性、图像平移等角度进行考查。考点一:以单调性为背景例1函数f(x)=2sinωx(+φ)(ω>0,-π<φ<0)在区间[π/6,π/2]上单调递增,且函数值从-2增大到0。若x_1,x_2∈[-π/6,π/2],且f(x_1)=f(x_2),则f(x_1+x_2)=_。  相似文献   

8.
积分概念在高等数学中的讲法大同小异,对定义于闭区间[a,b]上的任意有界函数f(x),不论怎样把区间[a,b]分成n个小段,a_0=x_0相似文献   

9.
<正>命题1函数f(x)=ax+b(a≠0)满足:f(x_1)f(x_2)<0,则■x_0∈(x_1,x_2),有f(x_0)=0.证明:函数f(x)=ax+b的零点即方程ax+b=0的根,b由a≠0知方程ax+b=0有实数根x_0=-a/b,即f(x_0)=0,所以只需证x_0=-∈(x,由f(x_1)f(x_2)<0得(ax_1+b)(ax_2+b)<0即:  相似文献   

10.
解决函数零点存在问题常使用函数零点存在定理:函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间(a,b)上有零点.但这个定理的逆命题是不成立的,即函数y=f(x)在开区间(a,b)上有零点,则f(a)f(b)<0不一定成立,所以定理中的条件仅是函数f(x)在(a,b)上有零点的充分条件,而不是充要条件.  相似文献   

11.
零点分段法是以函数的零点为分点将其定义域分成若干个使其定号的集合的方法。它在处理某些有关绝对值的问题、解某些不等式、研究某些函数的单调性等问题时是一个有效的工具。本文谈谈这个方法及其依据,并举例说明它的一些应用。 定理:如果f(x)是区间Ⅰ上的连续函数(区间Ⅰ可以是开的、闭的或半开的),且它只有n个零点x_1相似文献   

12.
<正>我在学习中发现:函数零点所在区间的判断主要是通过零点存在性定理,即如果函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,而这个c就是方程f(x)=0的根。但是,零点存在性定理只能判断出存在零点,不能确定零点的个数。  相似文献   

13.
<正>数学解题常需要进行等价转化,也就是寻求原问题成立的充要条件.但有时所寻求的充要条件很繁,不便于问题求解,这个时候我们可以利用原问题的必要条件将问题简化,在此基础上再说明结论的充分性,使解题过程得到优化.一、利用必要条件简化分类讨论例1 对于定义在区间D上的函数f(x),若任给x_0∈D, 均有f(x_0)∈D, 则称函数f(x)在区间D上封闭.若函数f(x)=x3-3x在区间[a,b](a,b∈Z)上封闭,求a,b的值.解法1  相似文献   

14.
若函数f(x)在区间[a,b]上的图象是一条连续曲线,并有f(a) f(b)<0,则函数f(x) 在区间(a,b)内有零点,即存在c∈(a,b),使 f(c)=0.  相似文献   

15.
<正>贵刊2013年第2期刊登了一篇名为《一道经典考题的解法与推广》的文章,笔者读了后,很受启发.对一道经典考题,在解答完后,再进行推广,确实是我们平时在教学、教研中应该予以提倡的一个好的做法.同时,笔者认为这道经典考题如果能数形结合,似乎会别有一番风味.原题再现已知函数f(x)=ax2+bx+c(x∈R)(a>0)的零点为x_1,x_2(x_1相似文献   

16.
<正>一般地,使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.因此,函数y=f(x)的零点就是方程f(x)=0的实数根.从图象上看,函数y=f(x)的零点就是它的图象与x轴交点的横坐标.一般地,若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.我们经常会遇到函数与方程的有关问题,下面我们看这样几个题目.  相似文献   

17.
函数的单调性可以从八个方面理解 ,且每一种理解都有其应用价值 ,分述如下 :设函数 y=f(x)的定义域为 1 ,D为I内的某个区间 .1 宏观理解在区间D上 f(x)的图象上升 (下降 ) f(x)是区间D上的增函数 (减函数 ) .例 1 已知a0 ,那么|f(x) |在区间 [a ,b]上 (   )A 单调递减 ,且 f(x) >0B .单调递增 ,且 f(x) >0C .单调递减 ,且 f(x) <0D .单调递增 ,且 f(x) <0解 取a =- 3,b=- 2 ,利用数形结合画出示意图 ,观察图象知|f(x) |在区间 [-3,- 2 ]上单调递增且…  相似文献   

18.
<正>函数是高中数学的基础,对函数性质的考查一直都是高考命题的热点。因此,熟练掌握函数的基本性质,并运用这些性质去解决实际问题显得尤为重要,本文将对函数的单调性和奇偶性在解题中的应用进行探索。一、函数的单调性(1)单调性的定义的等价形式:设x_1,x_2∈[a,b],则(x_1-x_2)[f(x_1)-f(x_2)]>0x_1-x_2f(x_1)-f(x_2)>0f(x)在[a,b]上是增函数;(x_1-x_2)[f(x_1)-f(x_2)]<0  相似文献   

19.
零点定理是必修1(人教版)的内容,是新教材新增的一个重要定理,有着广泛的应用.什么是零点呢?对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.零点定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,且满足f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c  相似文献   

20.
<正>一、零点为变量方法的发现近一段时间,笔者多次接触到一些试题,解答这些试题时,如采用常规方法,则烦琐易错;而如果把零点设置为变量,则会简便易行,下面具体分析。例1已知函数f(x)=x2+ax+b有两个零点x_1,x_2,且满足0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号