首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在热学中常会遇到一些有关理想气体状态参量(p、V、T)的变化率问题,今逐一推导出有关变化率的公式,在解题中能收到方便的效果。  相似文献   

2.
<正>求解理想气体状态变化问题需要先厘清三个状态参量:(1)理想气体的温度T——气体分子热运动的平均动能的标志,它决定了一定量的理想气体的内能;(2)理想气体的体积V——每个分子占据的空间远大于分子本身的大小;(3)理想气体的压强p——大量气体分子作用于容器壁单位面积上的平均力,它由分子的平均动能、气体分子的密集程度所决定。另外,需要牢记一定量某种气体在某一状态时的P、V、T三参量的关系PV=nRT或  相似文献   

3.
对于一定质量(设为n摩尔)的理想气体,我们用气体的体积V、压强P和温度T等物理量来描述其状态,这几个物理量叫做状态参量。对处于一定状态的理想气体,实验表明,参量n、P、V和T之间有一定的关系,描述这一关系的数学式叫做理想气体状态方程。  相似文献   

4.
在热力学第一定律的教学中,(2)式是必须介绍的,我们把它叫做理想气体的热力学性质。其意义是:理想气体的P、V、T变化过程中,内能的改变与体积(或压力)无关。或者说理想气体的内能只是温度的函数,即: U=f(T)……(3)。 关于(2)式的推导,现行的《物理化学》教材普遍是通过Gay Lussac 1807  相似文献   

5.
气体分子运动论一.理想气体状态方程1.明确什么叫平衡状态,什么叫状态参量。2.掌握理想气体状态方程及应用。(1)明确状态方程.pV=vRT中p、V、T、v各状态参量的含义。(2)掌握体积V和压强p常用的单位以及它们之间的换算关系。(3)运用状态方程分析和解决一些不太复杂的具体问题。3.明确理想气体的宏观定义。二.分子运动论的基本概念1.明确分子运动论的三个基本假设。2.掌握理想气体微观模型的特点。三.理想气体的压强公式  相似文献   

6.
一定质量m的理想气体的状态,可由压强P、体积V和温度T三个参量来描述,而且这三个参量遵循理想气体状态方程:PV/T=恒量在压强、体积、温度三个量中,知道其中任意两个,就可以确定第三个.因此用两个量就能确定其状态,所以我们可以用P-V图象中的一点(P,V)或P-T图象中的一点(P,T)、或V-T图象中的一点(V,T)来表示理想气体的状态,用其中一条曲线表示理想气体状态变化过程,从而分析和解决气体性质的问题.  相似文献   

7.
常见的热力学教材中,关于定质量的理想气体的自由能,由定义式F=U-TS结合理想气体内能的表达式及熵的表达式: 给出普遍的计算式: 式中C_v为理想气体定容热容量;T为热力学温度;u为摩尔数;R为气体普适常量;V为理想气体体积;U_o为内能的积分常数;S_o为熵的积分常数。  相似文献   

8.
理想气体状态方程PV=MRT/μ,它表示质量为M,摩尔质量为μ的理想气体在任一状态时,它的状态参量之间的关系。具体来说它有两种含义:①说明在任一状态时,理想气体的P、V、T、M四个量之间的关系。②说明一定质量的气体在状态变化过程中任何两个平衡状态的参量之间的关系。也就是说,一定质量的理想气体P、V、T三个参量同时发生变化时,各平衡态下,状态参量之间的关系为:  相似文献   

9.
理想气体状态方程表明了理想气体状态变化的规律,反映了一定质量的理想气体三个状态参量间的变化关系.具体来说,一优质量的理想气体P、V、T三个参量同时变化时,各状态下参量之间的关系为  相似文献   

10.
本课程的教学内容分为八章,现将各章的重点内容做一简要分析。 1 气体 1.1 理想气体状态方程式 此式可用于求算任一指定状态下理想气体系统p,V,T,n,m,M,ρ等。 例1 同温同压下,若A和B两气体(可视为理想气体)的摩尔质量之比M_A:M_B为2:1,则其密度之比ρ_A:ρ_B为__。  相似文献   

11.
皮小力  陈燕黎 《天中学刊》2001,16(5):106-106
笔者根据自己的教学实践 ,将理想气体状态方程 P1V1T1=P2 V2T2 进行推广得Σni=1Pi Vi Ti =恒量 ,用此式解变质量理想气体问题 ,更加简单 .1 公式Σni=1Pi Vi Ti =恒量的推导过程设一定质量的理想气体系统 ,变化前有 m个部分 ,各部分的状态参量为 P1、V1、T1,P2 、V2 、T2 ,…… Pm、Vm、Tm,变化后为 n个部分 ,各部分的状态质量分别为 P′1、V′1、T′1,P′2 、V′2 、T′2 ,…… P′n、V′n、T′n,则由克拉珀龙方程的推导式 M =μPVRT 得 :   M1=P1V1μRT1,M2 =P2 V2 μRT2,…Mm =Pm VmμRTm ,( 1 )   M′1=P…  相似文献   

12.
1 气体 本章分别讨论了理想气体和实际气体的性质、pVT关系及其计算方法。其中应重点掌握以下内容。 1.1 理想气体状态方程式 理想气体状态方程式:pV=nRT描述的是任一指定状态下理想气体系统的pVT关系,可用于求算该状态下系统的一些宏观性质,如p、V、T、n、m、M、ρ等。 例1 同温同压下,若A和B两种气体(可视为理想气体)的摩尔质量之比M_A:M_B为2:1,则其密度之比ρ_A:ρ_B为妇__。 答:2:1。  相似文献   

13.
一定质量的理想气体状态发生变化时,其变化过程可以用图象表示出来,正确理解热力学图象中p、V、T三个参量之间的关系,可以为我们解决有关图象问题提供方便.一、热力学图象1.等温变化中的p—y图象一定质量的理想气体,在温度保持不变时,它的变化规律遵循玻意耳定律pV=C(恒量).为了直观地表示这一变化规律,可以在P—V图  相似文献   

14.
一、理想气体的状态方程 1.理想气体 理想气体是一种科学的抽象,一个理想的物理模型。从微观角度看,理想气体分子之间没有相互作用,每个分子可以看成没有大小的弹性小球,这就是理想气体的微观模型。从宏观角度看,理想气体是在任何温度和压强下都能严格遵守气体的三个实验定律的气体。这就是理想气体的宏观模型。一般实际气体在常温、常压下,其性质很近似理想气体,故可将其视为理想气体。 2.一定质量的理想气体状态方程 气体状态方程表明了理想气体状态变化的规律,反映了一定质量的理想气体P、V、T三个状态参量间的变化关系。其关系式为  相似文献   

15.
理想气体的状态变化过程,常常既不是等温过程又不是绝热过程,而是介于二者之间的过程称为多方过程。在热学教材中,直接将绝热过程的过程方程中的γ换成n即得多方过程的过程方程: PV~γ=常数→ PV~n=常数 式中n称为多方指数。为1≤n≤γ的一常数。 在热学教材中,没有对上述多方过程的过程方程加以推导。而我们在处理这一节教材时,对该过程方程进行了推导并加以适当的讨论。这样能使学生对热力学第一定律,摩尔热容量和理想气体内能的概念加深理解,并且对理想气体一般过程与特殊过程间的关系更有所认识。现在对这节教材的具体处理,叙述如下。  相似文献   

16.
俞潮 《甘肃教育》2003,(6):41-41
理想气体状态方程p1V1/T1=p2V2/T2的成立条件是气体的质量保持不变。对质量变化的问题通常采用以下两种方法。一是选取适当的研究对象,将质量变化的问题转化为质量不变的问题。例如给足球充气时,可以选取最后充入足球内的全部气体为研究对象分析问题。再如利用抽气机从一容器中抽气时,可以每一次抽气前的气体为研究对象。二是利用理想气体状态方程的变式p1/ρ1T1=p2/ρ2/T2分析。这个公式虽然是从质量不变的情形推导出来的,但有时可以用来分析质量变化的问题。  相似文献   

17.
理想气体状态变化的解题步骤一般是,明确研究对象(是哪一部分气体或哪几部分气体);确定被研究对象的初始状态和终了状态,明确对应这两个状态的状态参量P、V、T(变质量时还要考虑气体的质量);应用理想气体状态方程或气体三定律(变质量时一般用克拉珀龙方程)列方程求解。但是在有些问题中,机械地根据初、终状态参量列方程计算却会出错。下面一个例子是颇有代表性的。  相似文献   

18.
查理定律给出了一定质量的理想气体在体积V不变时,压强p和温度T之间的关系。 p/T=c(式中C为常量)与之对应的p-T图线是一根直线,设气体的初始状态为p_0、T_0、V,则该图线经过(p_0、T_0),它的延长线经过坐标原点(如图1)。  相似文献   

19.
1.基础概述(1)一定质量的理想气体,当它处于某一状态或状态发生变化时,各参量之间的关系应服从理想气体状态方程和克拉珀龙方程.理想气体状态方程为  相似文献   

20.
目前的高校药学类物理化学教材在对焦耳实验的结论进行讨论时,对理想气体内能变和焓变的计算公式△U=nCV,m(T2-T1)、△H=nCp,m(T2-T1)都没有进行详细的证明,而是在给出焦耳定律后就直接使用,笔者认为比较突兀,在教学实践中笔者也感到学生对这部分内容的理解和掌握有一定难度。笔者认为需要在授课过程中对这部分教材进行深入的、详细的讲解。笔者在课堂教学中通过途径法证明了这两个公式对理想气体可以应用于任意过程,因而称之为计算理想气体内能变和焓变的"万能公式",使学生不仅了解了这两个公式的证明方法,而且加深了对这两个公式使用条件的认识,同时也向学生介绍了一个解决热力学问题的基本方法——途径法,收到了一举两得的教学效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号