首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高中数学第三册第160页题23(1)是一道在证明方法上很有启发性的复习题。这道题启示我们利用(1+x)~n·(1+x)~n=(1+x)~(2n)来证明组合恒等式(C_n~0)~2+(C_n~1)~2+…+(C_n~n)~2=(2n)!/n!·n!①事实上,恒等多项式  相似文献   

2.
文[1]提出用待定系数法求sum from j=0 to n (j~K C_n~5)的表达式,但该法不太理想,本文介绍另外两种方法,供大家参考。一、导数法展开(1+x)~n,我们有恒等式 C_n~0+C_n~1x+C_n~2x~2+…+C_n~nx~n=(1+x)~n (1) 在(1)式中对x求导得 C_n~1+2C_n~2x+3C_n~3x~2+…+nC_n~nx~(n-1)=n·(1+x)~(n-1) (2) 在(2)式两端乘以x,然后再对x求导得  相似文献   

3.
先看一个例题: 例1 求证:C_n~1/-C_n~2/2+C_n~3/3-……+(-1)~(n-1)·C_n~n/n=1+1/2+1/3+……+1/n。求证式等号两边均有n项。可用递推方法证之。证明:记S_n=C_n~1/1-C_n~3/2+C_n~3/3-……+(-1)~(n-1),C_n~n/n。  相似文献   

4.
应用 k~2=k(k+1)/2+(k-1)k/2=C_(k+1)~2c+C_k~2,那么sum ∑ from k=1 to n=(C_2~2+…C_(n+1)~2)+(C_2~2+…+C_n~2)=C_(n+2)~2+C_(n+1)~8=((n+1)n(2n+1))/6  相似文献   

5.
教材(指六年制重点中学《代数》第三册)P83第24(2)题:在(1+x)~3+(1+x)~4+…+(1+x)~(n+2)的展开式中,求含x~2项的系数。同学们解到C_3~2+C_4~2+…+C_n~2+2这一结果就认为做完了。我引导同学联想已做过  相似文献   

6.
公式C_(n+1)~m=C_n~m+C_n~(m-1)的一个应用利用组合数性质公式C_(n+1)~m=C_n~m+C=_n~(m-1)可以求形如{n(n+1)…(n+k-1)}的数列的前n项和S_n。 [例1] 求和 S=1·2·3+2·3·4+…+n(n+1)(n+2) 解:1/3!S=1·2·3/3!+2·3·4·/3!…+n(n+1)(n+2)/3! =C_3~3+C_4~3+…+C_(n+2)~3=(C_4~4+C_4~3)+C_5~3+…+C_(n+2)~3 =(C_5~4+C_5~3)+C_6~3+…+C_(n+2)~3=…=C_(n+2)~4+C_(n+2)~3 =C_(n+3)~4=n(n+1)(n+2)(n+3)/4!,  相似文献   

7.
一、用导数例1.求证:C_n~1+2C_n~2+3C_n~3+…+nC_n~n=n·2~(n-1) 证将(1+x)~n=C_n~0+C_n~1x+C_n~2x~2+…+C_n~nx~n两边对x求导数再命x=1  相似文献   

8.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

9.
关于组合恒等式的证明方法大体可归纳为如下一些: 一、在二项展开式中直接代入特别值而得组合恒等式二项展开式为 C_n~0 C_n~1x C_n~2x~2 … C_n~nx~n=(1 x)~n,其中 C_n~k=(n(n-1)…(n-k 1))/(k!)=(n!)/((n-k)!k!),k≤n,且规定C_n~0=1。若令x=1得 C_n~0 C_n~1 C_n~2 … C_n~n=2~n.(1) 令x=-1得 C_n~0-C_n~1 C_n~2-… (-1)~nC_n~n=0,(2)或 C_n~0 C_n~2 …=C_n~1 C_n~3 … *) (3) *)本  相似文献   

10.
一、分式代换法由x、y∈R~+,x+y=1,可设x=(m/m+n),y=(n/m+n),m、n∈R~+,从而实现了分式法解题。例1 已知x,y均大于零,且x+y=1,求证(1+(1/x))(1+(1/y)≥9。证明设x=(m/m+n),y=(n/m+n),m,n∈R~+,则(1+(1/x))(1+(1/y))=(1+(m+n/m))(1+(m+n/n))=(2+(n/m))(2+(m/n))=5+2((n/m)+(m/n))≥9。当且仅当(n/m)=(m/n),即x=y=1/2时取等号  相似文献   

11.
问题:有 a_1、a_2、…、a_(n+1)件不同的奖品,全部赠给 A_1、A_2、…、A_nn个人,如果每人至少要得到一件,有多少种不同的赠送方法?错解:先从n+1件中选 n 件,分给 n 人,每人一件,有 C_(n+1)~n·P_n=(n+1)~n!种方法,余下的一件给 n 个人中的一个,有 C_n~1 种方法.∴共有 C_(n+1)~n·P_n~n·C_n~1=z(n+1)!(种).  相似文献   

12.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

13.
<正> (a+b)n二项展开式有n+1项,(a+b+c)n三项展开式的项数可以按二项展开式办法求出.[(a+b)+c]n=C_n~0(a+b)nc0+C_n~1(a+b)n-1c1+…+C_n~r(a+b)n-rcr+…+C_n~n(a+b)0cn,其展开式的项数为(n+1)+n+(n-1)+…+2+1=(n+1)(n+2)/2,(*)  相似文献   

14.
本文约定字母均表示正数。 (1)如果a+b=1, 则(a+1/a)~2+(b+1/b)~2≥ 25/2 ① (2)如果a+b+c=1, 则(a+1/a)~2+(b+1/b)~2+(c+1/c)~2 ≥100/3 ②一般地,如果sum from i=1 to n a_i=1, 则 sum from i=1 to n(a_i+1/a_i)~2≥(n~2+1)~2/n ③下面只证不等式②、③。引进三元函数 W=(x+1/a)~2+(y+1/b)~2+(z+1/c)~2,那么它的几何意义是动点P(x,y,z)到定点(-1/a,-1/b,-1/c)的距离的平方。  相似文献   

15.
构造向量求函数最值   总被引:2,自引:2,他引:2  
函数最值问题 ,屡屡出现在国内外各类竞赛试题中 .适当构造向量 ,可使一类函数最值问题的思路清晰 ,解题方法简捷巧妙 ,并富于规律性、趣味性 .定理 m,n为两个向量 ,则| m| 2 ≥ ( m· n) 2| n| 2 .证明 设两向量的夹角为θ,则| m| 2 =| m| 2· | n| 2| n| 2 ≥ | m| 2 | n| 2 cos2θ| n| 2 =( m· n) 2| n| 2 ,证毕 .1 构造向量 ,求整函数最值例 1 求实数 x,y的值 ,使得 ( y- 1 ) 2 +( x+ y- 3) 2 + ( 2 x+ y- 6 ) 2 达到最小值 .( 2 0 0 1年全国初中数学联赛试题 )解 构造 m=( y- 1 ,x+ y- 3,2 x+ y-6 ) ,n=( - 1 ,2 ,- 1 ) ,依定理 …  相似文献   

16.
在组合数恒等式中,有一类可以通过对等式x~α(1+x~β)~n=sum form r=0 to n(C_n~rx~(a+rB)),(1+x)~n=sum form r=0 to n(C_n~rx~r)求导或积分而得,方法简便,且能揭示其数量之间的一般关系。兹举例如下: 1、[(1+x)~n]~′=(C_n~o+C_n~1X+C_n~2X~2+C_n~3X~4+…+C_n~rX~r+…+C_n~nX~n)′,  相似文献   

17.
<正>1 题目呈现设x,y,z∈R,且x+y+z=1.求(x-1)~2+(y+1)~2+(z+1)~2的最小值.(2019年全国卷Ⅲ选考题)2 解法展现2.1 切入点1 运用均值不等式解法1 [(x-1)+(y+1)+(z+1)]~2=(x-1)2+(y+1)2+(z+1)~2+2(x-1)(y+1)+2(y+1)(z+1)+2(z+1)(x-1)≤3[(x-1)~2+(y+1)~2+(z+1)~2].  相似文献   

18.
每期一题     
题:若:a、b、c为正数,试求函数y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)的极小值。解法一复数法运用代数中学过的复数模不等式 |z_1|+|z_2|≥|z_1+z_2|。设 z_1=x+ai x_2=(c-x)+bi ∴|z_1|=(x~2+a~2)~(1/2) |z_2|=((c-x)~2+b~2)~(1/2) ∵|z_1|+|z_2|≥|z_1+z_2| ∴y=|z_1|+|z_2|≥|z_1+z_2| =|x+ai+c-x+bi| =|c+(a+b)i|=(c~2+(a+b)~2)~(1/2) ∴y_min=(c~2+(a+b)~2)~(1/2)。解法二代数法运用不等式(x_1~2+y_1~2)~(1/2)+(x_2~2+y_2~2)~(1/2)≥((x_1+x_2)~2+(y_1+y_2)~2)~(1/2)其中等号仅当x_1/x_2=y_1/y_2时成立。∴y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)  相似文献   

19.
我们知道,二项展开式(x y)~n=sum from i=0 to n(C_n~ix~(n-i)y~i)的各项系数C_n~0,C_n~1,…,C_n~n的大小规律具有单峰性,即 当n为偶数时,C_n~0C_n~(n/2 1>)…>C_n~n; 当n为奇数时,C_n~0C_n~((n 1)/2) 1>…>C_n~n。 实际上,(ax by)~n=(sum from i=0 to n(C_n~ia~(n-i)b~ix~(n-i)y~i)(a,b∈R,ab≠0,n∈N_ ) ①的各项系数的绝对值 g_(i 1)=C_n~i|a|~(n-i)|b|~i(i=0,1,…,n) ②的大小规律也具有单峰性,本文给出这方面的结论。  相似文献   

20.
文[1]利用组合数的性质等知识解决了函数f(x)=a/cos~nx+b/sin~nx(0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号