首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
解三角形问题是高考的热点。现通过一道典型题目来分析解三角形的常用策略。题目:在△ABC中,已知AB=461/2/3,cos B=61/2/6,AC边上的中线BD=51/2,求sin A的值。策略1:考虑到D为AC的中点,取BC的中点E,把分散的条件集中转移到三角形BDE中,从而解决问题。解法1:如图1,设E是BC的中点,连接DE,则DE//AB,且DE=1/2AB=261/2/3。设BE=x。在△BDE中,由余弦定理,得BD2=BE2+ED2-2BE·ED·cos∠BED,即5=x2+8/3+2×261/2/3×61/2/6x,解得x=-7/3(舍去)或x=1,故BC=2。  相似文献   

2.
在中学几何教学中,我体会最深的,就是在总复习时,教者要抓住各种基本几何图形及各阶段知识之间的内在联系,把知识系统化.通过一题多解,开拓学生的思路,灵活的利用所学知识,探求新的解题方法.培养学生分析问题解决问题的能力.如下题:已知:△ABC中,AB=AC,D在AB延长线上,AB=BD,E为AB的中点.求证:CD=2CE此题可利用中点,平行线,三角形、平行四边形的性质,及平行线等分线段定理的推论,三角形的全等、相似和余弦定理来证.  相似文献   

3.
<正>面积问题是几何中常见的问题之一,一般都会转化为三角形的面积来求,本文就来谈谈这类问题的解法。例1在△ABC中,AB=4cm,AC=3cm,∠BAC的角平分线AD=2cm,求此三角形的面积。解:如图1,在△ABC中,设∠BAC=α,S_(△ABC)=S_(△ADC)+S_(△ADB)。所以1/2AB·AC·sinα=1/2AC·  相似文献   

4.
对于未给出图形的几何计算题,如果不注意几何图形可能出现的不同位置情况,常常会造成漏解.下面以“线段、角”有关的问题举例剖析如下. 例1 在一直线上截取线段AB=6cm,截取线段AC=10cm,求线段AB的中点D与线段AC的中点E间的距离.错解:如图1,因为AB=6cm,AC=10cm,所以AD=1/2AB=3cm,AE=1/2AC=5cn.A D E B C图1  相似文献   

5.
<正>1问题呈现如图1,在△ABC中,AB=AC,∠A=20°,点E在AB上,D在AC上,∠CBD=50°,∠BCE=60°,求∠CED的度数.这就是著名的"兰利问题".文[1]给出了两种求解途径:一是通过构造等腰三角形与等边三角形求解;二是利用正弦定理和余弦定理求解.文[2]也通过构造等边三角形求出了∠CED  相似文献   

6.
<正>本文通过一道解三角形问题,多角度利用"中点"条件解决问题.题目在ABC中,点D是BC边上的中点.若∠BAC=60°,AB=2,AD=3/2,求AC.解法1利用互补角设BD=DC=x,AC=y,由cos 60°=(22+y2+y2-(2x)2-(2x)2)/(2·2y),得4x2)/(2·2y),得4x2-y2-y2+2y-4=0.(1)由cos∠BDA+cos∠CDA=0,得  相似文献   

7.
正一、问题提出题已知△ABC中,3(1/2)tanA·tanB-tanA-tanB=3(1/2).(1)求∠C的大小;(2)设角A,B,C的对边依次为a,b,c,若c=2且△ABC是锐角三角形,求a2+b2的取值范围.解(1)C=π/3(略).(2)学生解1:由余弦定理得a2+b2-ab=4.  相似文献   

8.
原初中数学教材中的“解斜三角形”,现已编入高中代数第三章:“两角和的三角函数,解斜三角形”中,因此,三角恒等变形和正(余)弦定理的综合应用、立体几何计算题中的解三角形问题,应引起足够的重视。在解题中常用的三角形ABC中的边角关系有: (1)三角形的三个内角和为π,即A B C=π. 作用:三角形的三个内角(或它们的三角函数)之间的相互转化. (2)正弦定理:a/(sinA)=b/(sinB)=c/(sinC)=2R(R为三角形ABC外接圆半径); 余弦定理:c~2=a~2 b~2-2abcosC(当c=π/2时,勾股定理). 作用:三角形的边和角的正(余)弦之间的相互转  相似文献   

9.
与三角形有关的无附图问题时,可能会由于图形定势和思维的定势,导致漏解。本文精选几例来分析,说明常见的漏解现象. 例1 等腰三角形有_______条对称轴. 错解1条. 分析忽视了等腰三角形的特殊情形——等边三角形,因此正确答案是1条或3条. 例2 已知△ABc中,AB=23~(1/2),AC=2,BC  相似文献   

10.
正、余弦定理的一个重要应用就是根据已知条件判断三角形的形状,这是一类常见的解斜三角形问题.下面通过具体例子介绍判断三角形形状的几种常用方法,供同学们学习时参考. 一、利用正、余弦定理判断三角形的形状 例1 在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.  相似文献   

11.
<正>1题目在△ABC中,角A、B、C所对的边分别为a、b、c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为___.解三角形和二元函数最值问题是江苏高考必考内容,如何灵活运用解三角形中的正余弦定理、面积公式以及二元函数最值问题的解决方法,选择恰当正确的方法是个难点.正因为如此,倍受高考(模拟)  相似文献   

12.
在解一点分线段为二倍关系的几何题中 ,可以构造以该点为重心的新三角形 .利用三角形的重心性质解题 ,有时可以收到很好的效果 ,因为解题是构造性的 ,因此在培养学生的解题能力有很大帮助 :其解法新颖别致、能提高学生的学习兴趣 .1 证线段相等例 1 △ABC中 ,AB =AC ,E在AB上 ,BE =2EA .以AB为直径的圆交BC于D .连AD、CE相交于F .求证 :AF =FD .证明 如图 1,利用BE=2EA ,构造△BGC使E是△CBG的重心 .这样得A是GC中点 ,H是GB中点 .AD⊥BC ,由AB =AC知D是BC的中点 ,因此四边形HDCA为 .由此得AF =FD .图 1   …  相似文献   

13.
在几何问题中,中点问题是一类常见的问题.与中点有关的辅助线有以下几种.一、已知三角形两边中点,连结两个中点构造三角形的中位线例1 如图1,□ABCD的对角线BD、AC相交于点O,DB=AB,E是AB的中点,DE交AC于点F.求证:(1)∠BDE=∠DCA;(2)FD=FA.(温州97年中考题)分析 因为ABCD平行四边形,故O是BD中点,又E是AB的中点,连结OE,则OE是△ABD的中位线,可证ADOE是等腰梯形.证明 连结OE.  相似文献   

14.
正弦定理和余弦定理是架起三角形边角关系的两座桥梁,是解三角形的两个有力武器,锐不可当.重点难点1.正弦定理:a/(sinA)=b/(sinB)=c/(sinC)=2R(R表示△ABC外接圆的半径).2余弦定理:a~2=b~2+c~2-2bccosA;b~2=c~2+a~2-2cacosB:c~2=a~2+b~2-2abcosC.3.三角形面积公式:S=1/2ah_a(h_a  相似文献   

15.
正正、余弦定理是高中阶段的一个重要定理公式,在高考中对正、余弦定理的考查主要以三角形为依托,并结合实际应用问题来进行考查.题型一般为选择题、填空题,也可能是中等难度的解答题.学习这部分知识,要会运用正弦定理、余弦定理,解决一些简单的三角形度量问题和一些与测量、几何计算有关的实际问题.下面是对正余弦定理的知识概括以及常考点略析.正、余弦定理是解三角形最常用的定理.  相似文献   

16.
<正>阿波罗奥尼斯定理,又称三角形中线长定理,其内容表达为:三角形一条中线两侧所对边的平方和等于底边一半的平方与中线平方和的2倍.其证明方法有很多,常见的有垂线段法、坐标系法、余弦定理法等,下面介绍一种简单明了,而又引人深思的证明方法.问题引导在△ABC中,AM是BC边的中线,若BC=a,AC=b,AB=c,AM=t.求证:t2=1/2(b2+c2)-  相似文献   

17.
<正>等边三角形是初中几何中重要的基本图形之一.本文通过对一道填空题多种解法的探究,深入讨论此类基本图形在解题中的重要作用.题目如图1,△ABC是等边三角形,点D是AB的三等分点,且BD/AB=1/3,点E是AC的中点,BE、CD交于点F,则∠EFC的正切值为.解决本题的关键是,利用已知E是AC的中点,由等边三角形三线合一性质得BE⊥AC,则∠FEC=90°.  相似文献   

18.
三角形是平面几何的重要内容,是解决四边形和圆问题的基础。解有关三角形问题时,常常需要添加辅助线,现将几种常用辅助线的添置方法归纳总结如下。 一、遇到中点配中点,连点添边中位线 例1 如图1、ΔABC中,D、E分别在AB、AC上,BD=CE,BE、CD的中点分别是M、N,直线MN分别交AB、AC于点P、Q,求证:AP=AQ(杭州1985年中考试题)  相似文献   

19.
设三角形的三边依次为a,b,c,且令p=1/2(a+b+c),则三角形的面积为 S_■=(p(p-a)(p-b)(p-c))~(1/2)。《中学数学实验教材》几何2册下P.143用余弦定理证明了这个公式。余弦定理是以勾股定理为基础的。因此,这个公式也可以直接应用勾股定理来证明。如图,AD是△ABC中BC边上的高。  相似文献   

20.
<正>"倍长中线"是一种常用的辅助线.但很多问题在倍长中线构建全等三角形的基础上,还需通过第二次构造全等才能解决.而第二次构造中,"等角"的证明是解决此类问题的难点.本文给出"倍长中线"法的五种导角策略,以作抛砖引玉.一、利用直角导角例1 如图1,在△ABC中,∠C=90°,D为AB的中点,点E,F分别在边AC,BC上,且ED⊥FD.求证:AE2+BF2+BF2=EF2=EF2.证明如图1,延长ED至点G,使DG=ED,连结BG,GF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号