共查询到19条相似文献,搜索用时 125 毫秒
1.
情境感知是泛在学习的本质特征,为学习者提供情境化、个性化与差异化的资源服务已成为泛在学习领域一个新的研究议题。文章采用个性化推荐视角,研究了泛在学习情境的形式化表征,构建了情境化的学习资源推荐模型,阐述了情境化资源推荐的一般过程,并就情境化资源推荐的关键问题进行了分析。 相似文献
2.
3.
学习资源推荐作为解决学习者信息迷航和支持个性化学习的重要途径已受到越来越多学者的关注。随着泛在学习的发展,仅在学习开始时向学习者推荐感兴趣的资源已难以满足学习的需求,学习过程中推荐资源、指导专家、辅导服务等显得更加重要。未来的推荐系统应以支持学习为目的,从单纯的资源推荐向将资源推荐与学习过程结合的方向发展,从以用户兴趣为主推荐向感知学习情境推荐发展。文章从学习过程情境的角度出发,对泛在学习环境下的推荐系统进行重新定位与设计,并介绍了学习元平台中的推荐系统,试图为相关研究者提供新的思路与参考。 相似文献
4.
为尊重学习者个体差异性,实现基于微信公众平台的泛在学习资源个性化推荐和个性化学习,增强学习者与学习资源的相关性,帮助学习者提高学习效率,论述了泛在学习的内涵,阐述了泛在学习公众平台相关研究现状。基于行为主义学习理论和因材施教理论设计了包含学习者层面、教师层面、系统层面和管理员层面的泛在学习资源个性化推荐微信公众平台相关功能模块,可为相关研究提供参考。 相似文献
5.
6.
苏雪 《深圳职业技术学院学报》2012,11(1):8-14
提出一种泛在学习平台中个性化内容推荐机制,以帮助学习者在泛在学习环境下获取个性化的学习内容.该机制在综合个性化信息的基础上,按内容相似度的顺序生成个性化的搜索结果,使用学习历史信息、当前地理位置信息及输入查询信息等,试图过滤掉不相关的搜索结果,以达到泛在环境下学习内容获取效率. 相似文献
7.
8.
9.
文章是在海南省教育科学规划一般立项课题"智能适应服务导向的泛在学习模式与资源"研究的基础上形成的,文章阐述了智能适应服务导向的泛在学习的概念和内涵,在综合分析当前U-Learning资源建设的基础上,双向智能适应服务导向的泛在学习的体系结构和动态交互结构被阐述,提出了面向上下文感知的泛在学习指标层次适配模型和智能适应服务导向的泛在学习云平台,期望为泛在学习资源的开发提供建设性指导意见。 相似文献
11.
基于用户模型的个性化本体学习资源推荐研究 总被引:10,自引:1,他引:9
如何基于学习者的个性化学习特征,使学习者在大量学习资源和学习活动中快速定位自己最适合的内容已成为当前热点问题.本文研究的SAELS(Semantic Adaptiv-Learning System)实现以本体技术为核心,以用户模型为依据的个性化本体学习资源推荐.文中首先以课程为例构建本体,然后介绍了如何构建一个成功的用户模型,接着提出了个性化本体学习资源推荐模型,最后重点探讨了如何根据Felder-Silverman学习风格量表和学习过程行为模式,推断学习风格,和基于概念累积计分法推断认知水平两个层面加以整合实现个性化本体学习资源推荐. 相似文献
12.
当前,个性化学习推荐系统面临数据隐私保护、"冷启动"和法律约束等问题,而联邦学习作为近年来优秀的数据隐私保护机器学习技术解决方案,可有效解决这些问题。基于此,文章将联邦学习和个性化学习推荐相结合,设计了联邦个性化学习推荐系统。首先,文章分析了联邦个性化学习推荐系统的具体应用场景,包括横向联邦、纵向联邦、联邦强化三种。其次,文章分别针对这三种应用场景设计了相应的应用解决方案。最后,文章探讨了未来联邦个性化学习推荐系统面临的严峻挑战,以期帮助教育利益相关者在保护数据隐私的同时共享数据价值,最终实现更安全、更高质量的个性化学习推荐服务。 相似文献
13.
e-learning的调查发现,e-learning支持系统中学习资源推荐主要有Top-N和关键词检索两种方式,都无法向学习者个性化地推荐学习资源。受电子商务研究领域中相关研究成果启发,我们尝试将协同过滤推荐技术引入学习资源的个性化推荐研究中。通过综述学习资源个性化推荐中三种常用的推荐技术,介绍了协同过滤推荐技术的工作原理、实现方法及存在问题。在此基础上,提出了一个优化的基于协同过滤技术的学习资源个性化推荐系统的理论模型,重点讨论了模型的结构、隐式评分机制和算法的实现,并讨论了个性化学习资源推荐模型中的三个关键技术。以启发e-learning研究人员从不同的层面和角度探索协同过滤技术在e-learning中的应用,提高学习资源个性化推荐的精度和效率。 相似文献
14.
针对当前文献推荐中个性化程度不高等问题,提出一种对用户行为重新分配权重的度量算法。运用用户行为数据按照时间顺序重新分配权重,突出近期用户兴趣构建用户兴趣模型。通过LDA主题分布、关键词分布等方法构建学术资源模型,实现两模型间匹配,完成推荐。通过实验验证,该算法准确性达到80%,比传统等权重算法提高近20%,召回率与F值分别提升了7%和5%。研究表明,基于时间因素的用户兴趣度量算法相较于传统等权重算法具有更高的准确性,未来可进一步优化用户兴趣度量以实现精准推荐服务。 相似文献
15.
探究在线学习体验影响因素及其构成关系,有助于提高学习者的在线学习效果.本研究在文献调研的基础上,以Blackboard远程教学平台实用英语在线课程为例,采用调查问卷、解释结构模型及结构方程模型等方法,确定了影响学习者在线学习体验的6个关键因素(师生互动、同伴交互协作、课程任务、教师教学能力、在线资源特性、课程活动设计)... 相似文献
16.
《实验室研究与探索》2015,(6):146-149
随着Web服务数量的迅速增长,Web服务个性化推荐方法已成为Web服务发现和选择的重要辅助手段。为了提高Web服务推荐的准确率和满意度,本文提出基于用户情境和质量偏好的Web服务推荐方法,该方法根据用户的QoS偏好、用户资料和用户共同调用的服务来计算用户的相似度,并以此相似度为基础考虑推荐时间因素,来实现对相似用户Web服务的准确推荐。实验表明,该推荐算法的有效性和可行性。 相似文献
17.
个性化学习推荐模型的研究 总被引:1,自引:0,他引:1
通过分析个性化学习的特点,构造了个性化学习推荐模型.为保证学习效果,设计了基于ISM的学习序列生成方法,从整体上引导学习者的学习过程;在单个知识点学习时,采用关联规则挖掘,推荐符合学习者特征的学习材料. 相似文献
18.
讨论为访问用户提供高质量个性化推荐服务的个性化推荐系统的设计和实现.通过分析现有的基于Web体系结构的个性化推荐系统的特点,从用户访问W eb页面的特点出发,确定了以网页结构相关性为基础进行个性化推荐技术研究的目标.推荐系统由离线挖掘子系统和在线推荐子系统两部分组成.仿真实验表明,基于网页结构相关性的推荐系统具有较高的推荐准确性和更快的响应速度. 相似文献
19.
在线学习作为一种新型的学习方式,能够为学习者提供个性化的学习支持。有效推荐个性化学习路径是学习服务研究中的重点问题。文章结合大数据背景下个性化学习的特征,建立学习者模型,通过数据挖掘技术深入分析学习者的学习行为信息以及知识之间的关系,结合基于内容的推荐和协同过滤的推荐方式,设计个性化学习路径推荐的具体方案,为解决在线学习过程中学习者面临的“信息过载”和“知识迷航”问题提供参考和借鉴。 相似文献