首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 Introduction Thispaperisprimarilyconcenredwiththeanalysisofthedegeneracycaseswhichmayoccurinthepro cessofconstructinggeneralizedinversefunction val uedPad啨approximants . Letf(s,λ)beagivenpowerserieswithfunctionalcoefficients,i.e .,f(s,λ) =c0 (s) +c1(s)λ +c2 (s)λ2 +… +  cn(s)λn+… , (1)wherecj(s)isanalytic ,andf(s ,λ)isalsoanalyticatλ =0 .Thenon degeneratefunction valuedPad啨approximantwasintroducedbyGraves Morris[1] .Anintactdetermi…  相似文献   

2.
关于一元二次方程的两根之和m=x1 x2=-ab、两根之积n=x1x2=ac是大家都熟悉的,那么一元二次方程的两根之比λ和两根之差d与系数的关系又是怎样的呢?经过探索,可得定理1如果一元二次方程ax2 bx c=0(a≠0,c≠0)得两根之比为λ,则有(λ 1)2λ=abc2.证明由题设得(λ λ1)2=λ2 2λ 1λ=λ 1λ 2=xx12 xx12 2=x12 2x1x2 x22x1x2=(x1x 1xx22)2将韦达定理代入(1)得(λ λ1)2=(-cab)2a=abc2.定理2如果一元二次方程ax2 bx c=0(a≠0)两根之差的绝对值为d,则有d=|aδ|(其中δ=b2-4ac).证明对称性,不妨设x1=21a(-b b2-4ac),x2=21a(-b-b2-4ac),所以d=|x1-x…  相似文献   

3.
文 [1]给出了条件 x+ y=1下 1xn+ λyn的最小值定理 ,并利用 (a2 + b2 ) (c2 + d2 )≥ (ac+ bd) 2 (a,b,c,d∈ (0 ,+∞ )和待定系数法证明之 .定理 已知 x,y,λ∈ (0 ,+∞ )且 x+ y=1,则当且仅当 y∶ x=λ1n+ 1 时 ,1xn+ λyn(n∈N* )取最小值 ,最小值为 (1+ λ1n+ 1 ) n+ 1 .本文给出定理的一个简单证明 .证明 ∵x,y,λ∈ (0 ,+∞ ) ,n∈ N* ,且x+ y=1,∴ 1xn+ λyn=(1xn+ λyn) (x+ y) n =(1xn+λyn) (C0nxn+ C1 nxn-1 y+ C2nxn-2 y2 +… + Crnxn-ryr+… + Cnnyn)=1+ C1 nyx + C2ny2x2 +… + Crnyrxr +… + Cnnynxn+ λC0nxnyn + …  相似文献   

4.
20 0 2年全国高中数学联赛二试第二大题 :实数 a,b,c和正数 λ使得 f( x) =x3+ ax2+ bx+ c有三个实根 x1 ,x2 ,x3,且满足 ( 1 ) x2- x1 =λ;( 2 ) x3>12 ( x1 + x2 ) .求2 a3+ 2 7c- 9abλ3 的最大值 .笔者在全国联赛阅卷过程中发现学生有如下巧解 :由韦达定理  x1 + x2 + x3=- a,x1 x2 + x2 x3+ x3x1 =b,x1 x2 x3=- c.123由 1、2及 λ>0 ,不妨设 :x1 =m- n,x2 =m+ n,x3=m+ k( m为任意实数 ,n,k为任意正实数 )∴a=- ( 3m+ k) ,b=3m2 - n2 + 2 mk,c=- ( m3+ m2 k- mn2 - n2 k) ,λ=2 n.设 M=2 a3+ 2 7c- 9abλ3 ,则代入整理得M=14 ( - k3n…  相似文献   

5.
一个不等式的再推广   总被引:1,自引:0,他引:1  
问题 :已知 a,b,c∈ R~+,则 a/(b + c)+ b/(a + c)+ c/(a + b)≥ 3/2文 [1 ]将其推广为 :设△ ABC的三边为 a,b,c,若 -1 <λ<1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥3λ + 2 ( 1 )本文将 ( 1 )式推广为 :命题 1 已知 a,b,c∈ R+,若 -2 <λ≤1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥ 3λ + 2 ( 2 )若λ=1时 ,( 2 )式显然成立 ,若λ∈ ( -2 ,1 )时 ,令x =λa + b + cy =λb + a + cz =λc+ a + b a =( y + z) - (λ+ 1 ) x( 1 -λ) (λ + 2 )b =( x + z) - (λ + 1 ) y( 1 -λ) (λ + 2 )c=( x + y) - (λ+ 1 ) z( 1 -λ)…  相似文献   

6.
对点P(x0,y0)和椭圆c:x2/a2 y2/b2=1,设λ=x20/a2 y20/b2.显然,当λ>1时,P在椭圆外;当λ=1时,P在椭圆上;当0≤λ<1时,P在椭圆内.  相似文献   

7.
对于二次函y_1(x)=a_1x~2+b_1x+c_1与y_2(x)=a_2x~2+b_2x+c_2,(a_1.a_2(/)0),能否找到常数λ,使叠加得到的y_0(x)=y_1(x)+λy_2(x)的函数值不改变符号(定正或定负)? 下面用纯粹初等的方法进行探索: 因y_0(x)=a_1[x~2+b_1/a_1x+c_1/a_1+λa_2/a_1(x~2+b_2/a_2x+c_2/a_2)],若记b_/a_1=b、c_/a_1=c、λa_2/a_1=μ、 b_2/a_2=b_0、c_2/a_2=c_0,即考查y(x)=x~2+bx+c+μ(x~2+b_0x+c_0) 仍记为y(x)=y_1(x)+μy_2(x)〕在哪些情况下可以选取到实数μ使其定号。  相似文献   

8.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

9.
20 0 2年全国高中数学联赛加试试题的第二大题是 :实数 a,b,c和正数λ使得 f ( x) =x3+ax2 + bx+ c有三个实根 x1 ,x2 ,x3,且满足( 1 ) x2 - x1 =λ;( 2 ) x3>12 ( x1 + x2 ) .求 2 a3+ 2 7c- 9abλ3 的最大值 .笔者研读了参考答案 ,觉得解法不够自然 ,因此 ,本文给出该试题的比较自然的解题思路并进行简单的分析 ,供读者参考 .首先注意到试题的最终要求是求表达式2 a3+ 2 7c- 9abλ3 的最大值 .但是这一个表达式比较复杂 .一方面 ,它包含 a,b,c,λ等多个参变量 ;另一方面 ,它的形式也“怪怪”的 ,缺乏美感 .怎么会想出求这样一个表达式的最…  相似文献   

10.
设A(x1,y1) ,B(x2 ,y2 ) ,点P(x ,y)分有向线段AB所成的比APPB=λ(λ≠ - 1 ) ,则有 :x =x1+λx21 +λ ,y =y1+λy21 +λ .且当P为内分点时 ,λ >0 ;当P为外分点时 ,λ <0 (λ≠- 1 ) .当P与A重合时 ,λ =0 ;当P与B重合时 ,λ不存在 ,这就是定比分点坐标公式 .应用定比分点坐标公式 ,能使许多问题化难为易 ,化繁为简 ,有着非凡的功效 .1 比较大小例 1 已知a >0 ,b >0 ,0 0 ,则 1 -x =1 - λ1 +λ=11 +λ.于是 a2x+ b21 -…  相似文献   

11.
由不等式a2 + (λb) 2 ≥ 2λab(a,b∈R ,λ为参数 ) ,得a2 ≥ 2λab-λ2 b2 .由此得到如下一个推论 :若b >0 ,则a2b ≥ 2λa-λ2 b. ( )对于参数λ的任一实数值 ,不等式 ( )总是成立的 ,当且仅当λ =ab 时 ,取等号 .值得重视和有趣的是应用这个不等式可以简捷、巧妙地证明一类分式不等式 .现举例说明 .例 1 设xi >0 (i =1 ,2 ,… ,n) ,求证 :∑ni=1x2 ixi+1≥ ∑ni=1xi(xn+1 =x1 ) .证明 由xi >0及 ( ) ,得x2 ixi+1≥ 2λxi-λ2 xi+1 .∴∑ni=1x2 ixi+1≥ ∑ni=1(2λxi-λ2 xi+1 )=(2λ -λ2 ) ∑ni=1xi.取λ=1 ,原不等式得证 .例 2 设…  相似文献   

12.
1 问题来源 题1 (2013年高考广西卷理科压轴题)已知函数f(x)=In(1+x)-x(1+λx)/1+x.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{an}的通项an=1+1/2+…+1/n,证明a2n-an+41/n> In2. 笔者在研究上述高考试题时,感觉似曾相似,发现它是2010年高考湖北卷理科压轴题的拓展与延伸. 2 题源探寻 题2 (2010年高考湖北卷理科压轴题)已知f(x)=ax+b/x+c(a>0)在(1,f(1))处的切线为y=x-1.(1)用a表示b、c;(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的范围;(3)证明:1+1/2+…+1/n>ln(n+1)+n/2(n+1).  相似文献   

13.
2002年全国高中数学联赛二试第二题如下: 实数a,b,c和正数λ使得f(x)=x3 ax2 bx c有三个实数x1,x2,x3,且满足(1)x2-x1=λ; (2)x3>(1)/(2)(x1 x2).  相似文献   

14.
(本讲适合高中)解析法证明平面几何问题已备受关注,而直线系方程的巧妙利用,既可摆脱求交点、直线方程等烦琐运算,又能较简单地得到所需结论,充分体现了整体处理问题的解题策略.本文从六个方面介绍直线系方程在证明平面几何问题中的应用.若直线a1x b1y c1=0与a2x b2y c2=0相交于点P,则通过点P的直线系方程可写成λ(a1x b1y c1) μ(a2x b2y c2)=0(λ、μ∈R).1证明三线共点用直线系方程表示过其中两直线交点的直线,然后,取特殊的λ0、μ0时就是第三条直线,从而证明三线共点.图1例1如图1,⊙O与△ABC的边BC、CA、AB分别交于点A1和A2、点…  相似文献   

15.
一、打破常规、直观求解例 1 若 x 1x=c 1c,则 x=(   )。分析 :条件化简之后 ,是一个一元二次方程 ,故 x的值有两个。由观察可知 x1 =c与 x2 =1c满足原方程。故 x=c或 1c。说明 :要提高解题速度 ,有时必须打破常规 ,不要被基本的运算顺序所束缚。二、整体把握 ,巧妙求解例 2 若 x2 x- 1 =0 ,则 x3 2 x2 1 999=(   )。分析 :若先求 x2 x- 1 =0的根。再代入计算则十分繁杂。通过变形 ,运用整体代换 ,能化难为易。解 :∵ x2 x- 1 =0 ,∴ x2 x=1。∴ x3 2 x2 1 999=x3 x2 (x2 x) - x 1 999=x(x2 x- 1 ) (x2 x) 1 999=2 0 0 0。…  相似文献   

16.
论文主要考虑如下形式的非局部问题ut=Δu+λu∫Ω1(y,t)fπ(x,y)dy,x∈Ω,t0,u|Ω=0,t0,(0,1)u(x,0)=g1(x)x∈Ω1,其中fσ(x,y)=1,0,y∈Ω1,x∈Ω,其他,并且k∈(0,1],Ω=[-1,1]×…×[xn-k,xn+k],x∈Ω,x=(x1,…xn),,并利用Matlab实验对(0.1)的平衡解进行了研究,得到以下数值结果1.若λnπ2/4,上述问题有一个稳定的平衡解u=0;2.若λnπ2/4,上述问题有两个稳定的平衡解u=0和u=uλ0.其中n 1,2,…,从而为进一步研究非局部问题的解析解奠定基础。  相似文献   

17.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

18.
刚结束的2002年全国高中数学联合竞赛加试试题第二题如下: 实数a、b、c和正数λ使得f(x)=x3+ax2+bx+c有三个实根x1,x2,x3,且满足 x2-x1=λ; (1) x3>1/2(x1+x2). (2) 求2a3+27c-9ab/λ3的最大值.  相似文献   

19.
有关“绝对值与二次函数、一次函数”问题 ,以下列这组习题最为典型、棘手 ,本文试进行多方位地探讨 ,得到几种有效、普遍的方法 已知f(x) =ax2 bx c ,当 |x|≤ 1时 ,总有 |f(x)|≤ 1.试证以下系列问题 :①求证 :|c|≤ 1,|b|≤ 1,|a c|≤1,|a|≤ 2 .②求证 :当|x|≤ 2 ,总有|f(x)|≤ 7.③求证 :当|x|≤λ ,总有|f(x)|≤ 2λ2-1(λ≥ 1) .④记g(x) =ax b ,求证 :当|x|≤ 1时 ,总有|g(x) |≤ 2 .⑤g(x) =2ax b ,求证 :当|x|≤ 1时 ,总有 |g(x)|≤ 4.⑥记g(x) =λax b ,求证 :当 |x|≤1时 ,总有 |g(x)|≤ …  相似文献   

20.
一元二次方程是初中数学学习的重点.本文给出一元二次方程的两个性质,并举例说明其应用,供同学们学习参考.一、性质性质1:在一元二次方程ax2+bx+c=0 (a≠0)中,若a+b+c=0,则x1=1,x2=ca. 证明:由a+b+c=0,得b=-a-c.将其代入原方程,得ax2+(-a-c)x+c=0,即(x-1)(ax-c)=0.因此,x1=1,x2=ca. 下面是一个类似的性质:性质2:在一元二次方程ax2+bx+c=0 (a≠0)中,若b=a+c,则x1=-1,x2=-ca.(证明略)二、应用举例例1解下列方程:(1)8x2+15x-23=0;(2)5x2+11x+6=0. 解:(1)∵8+15-23=0,∴x1=1,x2=-238.(2)∵11=5+6,∴x1=-1,x2=-6…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号