首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to examine neuromuscular variables contributing to differences in force loss after participants were exposed to the same relative bout of eccentric exercise. Thirty-six males performed 50 maximal eccentric contractions of the elbow flexors and were stratified into high responders (n?=?10) and low responders (n?=?10) based on force loss 36 h after exercise. Maximal voluntary isometric contractions (MVCs) and electromyography (EMG) were measured at baseline and 36 h after exercise. During eccentric exercise, mean peak torque, mean end-range torque from the final 25% of each trial and total angular impulse were computed over 25 contractions in each of two bouts. The slope of the change in these values for each 25 eccentric contractions was calculated for each participant using linear regression. At baseline, MVC was not different between groups (low responders: 97.0?±?9.6 N?·?m; high responders: 82.7?±?6.4 N?·?m; P?=?0.08). High responders demonstrated a 68% (range 62-78%) reduction in MVC and low responders a 39% (29-48%) reduction after exercise. Peak torque, end-range torque and total angular impulse were 13%, 40% and 33% higher, respectively, in the low than in the high responders (peak torque: P?=?0.0002; end-range torque: P?<?0.0001; total angular impulse: P?<?0.001). The rate of decline in peak torque slope was greater in high than in low responders (P?=?0.044). In conclusion, lower peak torque, end-range torque and total angular impulse during eccentric contractions and a greater peak torque slope may identify high responders to eccentric exercise.  相似文献   

2.
Previous studies analysing electromyograms (EMGs) from indwelling electrodes have indicated that fast-twitch motor units are selectively recruited for low-intensity eccentric contractions. The aim of this study was to compare the frequency content of surface EMGs from quadriceps muscles during eccentric and concentric contractions at various contraction intensities. Electromyograms were recorded from the rectus femoris, vastus lateralis and vastus medialis muscles of 10 men during isokinetic (1.05 rad x s(-1)) eccentric and concentric knee extension contractions at 25%, 50%, 75% and 100% of maximal voluntary contraction (MVC) for each contraction mode. Additionally, isometric contractions (70 degrees) were performed at each intensity. The mean frequency and root mean square (RMS) of the surface EMG were computed. Mean frequency was higher for eccentric than concentric contractions at 25% (P < 0.01), 50% (P < 0.01) and 75% (P < 0.05) but not at 100% MVC. It increased with increasing contraction intensity for isometric (P < 0.001) and concentric (P < 0.01) contractions but not for eccentric contractions (P = 0.27). The EMG amplitude (RMS) increased with increasing contraction intensity similarly in each contraction mode (P < 0.0001). Higher mean frequencies for eccentric than concentric contractions at submaximal contraction intensities is consistent with more fast-twitch motor units being active during eccentric contractions.  相似文献   

3.
This study was undertaken to examine the acute effect of interferential current on mechanical pain threshold and isometric peak torque after delayed onset muscle soreness induction in human hamstrings. Forty-one physically active healthy male volunteers aged 18-33 years were randomly assigned to one of two experimental groups: interferential current group (n = 21) or placebo group (n = 20). Both groups performed a bout of 100 isokinetic eccentric maximal voluntary contractions (10 sets of 10 repetitions) at an angular velocity of 1.05 rad · s(-1) (60° · s(-1)) to induce muscle soreness. On the next day, volunteers received either an interferential current or a placebo application. Treatment was applied for 30 minutes (4 kHz frequency; 125 μs pulse duration; 80-150 Hz bursts). Mechanical pain threshold and isometric peak torque were measured at four different time intervals: prior to induction of muscle soreness, immediately following muscle soreness induction, on the next day after muscle soreness induction, and immediately after the interferential current and placebo application. Both groups showed a reduction in isometric torque (P < 0.001) and pain threshold (P < 0.001) after the eccentric exercise. After treatment, only the interferential current group showed a significant increase in pain threshold (P = 0.002) with no changes in isometric torque. The results indicate that interferential current was effective in increasing hamstrings mechanical pain threshold after eccentric exercise, with no effect on isometric peak torque after treatment.  相似文献   

4.
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.  相似文献   

5.
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad s -1 ) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.  相似文献   

6.
The present study assessed neuromuscular and corticospinal changes during and after a fatiguing submaximal exercise of the knee extensors in different modes of muscle contraction. Twelve subjects performed two knee extensors exercises in a concentric or eccentric mode, at the same torque and with a similar total impulse. Exercises consisted of 10 sets of 10 repetitions at an intensity of 80% of the maximal voluntary isometric contraction torque (MVIC). MVIC, maximal voluntary activation level (VAL) and responses of electrically evoked contractions of the knee extensors were assessed before and after exercise. Motor evoked potential amplitude (MEP) and cortical silent period (CSP) of the vastus medialis (VM) and rectus femoris (RF) muscles were assessed before, during and after exercise. Similar reductions of the MVIC (?13%), VAL (?12%) and a decrease in the peak twitch (?12%) were observed after both exercises. For both VM and RF muscles, MEP amplitude remained unchanged during either concentric or eccentric exercises. No change of the MEP amplitude input–output curves was observed post-exercise. For the RF muscle, CSP increased during the concentric exercise and remained lengthened after this exercise. For the VM muscle, CSP was reduced after the eccentric exercise only. For a similar amount of total impulse, concentric and eccentric knee extensor contractions led to similar exercise-induced neuromuscular response changes. For the two muscles investigated, no modulation of corticospinal excitability was observed during or after either concentric or eccentric exercises. However, intracortical inhibition showed significant modulations during and after exercise.  相似文献   

7.
BackgroundFemales are typically less fatigable than males during sustained isometric contractions at lower isometric contraction intensities. This sex difference in fatigability becomes more variable during higher intensity isometric and dynamic contractions. While less fatiguing than isometric or concentric contractions, eccentric contractions induce greater and longer lasting impairments in force production. However, it is not clear how muscle weakness influences fatigability in males and females during sustained isometric contractions.MethodsWe investigated the effects of eccentric exercise-induced muscle weakness on time to task failure (TTF) during a sustained submaximal isometric contraction in young (18–30 years) healthy males (n = 9) and females (n = 10). Participants performed a sustained isometric contraction of the dorsiflexors at 35° plantar flexion by matching a 30% maximal voluntary contraction (MVC) torque target until task failure (i.e., falling below 5% of their target torque for ≥2 s). The same sustained isometric contraction was repeated 30 min after 150 maximal eccentric contractions. Agonist and antagonist activation were assessed using surface electromyography over the tibialis anterior and soleus muscles, respectively.ResultsMales were ∼41% stronger than females. Following eccentric exercise both males and females experienced an ∼20% decline in maximal voluntary contraction torque. TTF was ∼34% longer in females than males prior to eccentric exercise-induced muscle weakness. However, following eccentric exercise-induced muscle weakness, this sex-related difference was abolished, with both groups having an ∼45% shorter TTF. Notably, there was ∼100% greater antagonist activation in the female group during the sustained isometric contraction following exercise-induced weakness as compared to the males.ConclusionThis increase in antagonist activation disadvantaged females by decreasing their TTF, resulting in a blunting of their typical fatigability advantage over males.  相似文献   

8.
This study examined whether short-term maximal resistance training employing fast-velocity eccentric knee extensor actions would induce improvements in maximal isometric torque and rate of force development (RFD) at early (<100 ms) and late phases (>100 ms) of rising torque. Twenty healthy men were assigned to two experimental groups: eccentric resistance training (TG) or control (CG). Participants on the TG trained three days a week for a total of eight weeks. Training consisted of maximal unilateral eccentric knee extensors actions performed at 180°s-1. Maximal isometric knee extensor torque (MVC) and incremental RFD in successive 50 ms time-windows from the onset contraction were analysed in absolute terms (RFDINC) or when normalised relative to MVC (RFDREL). After eight weeks, TG demonstrated increases in MVC (28%), RFDINC (0–50 ms: 30%; 50–100 ms: 31%) and RFDREL (0–50 ms: 29%; 50–100 ms: 32%). Moreover, no changes in the late phase of incremental RFD were observed in TG. No changes were found in the CG. In summary, we have demonstrated, in active individuals, that a short period of resistance training performed with eccentric fast-velocity isokinetic muscle contractions is able to enhance RFDINC and RFDREL obtained at the early phase of rising joint torque.  相似文献   

9.
文烨 《中国体育科技》2012,48(4):71-77,89
目的:研究优秀乒乓球运动员和普通在校大学生肘关节拮抗肌活动在等动屈伸过程中的差异。方法:以8名优秀乒乓球运动员和8名普通高校大学生为研究对象,利用Biodex等动测试仪和Noraxon表面肌电仪记录上肢肘关节等动屈伸过程中作为拮抗肌的肱二头肌和肱三头肌的力量特征和表面肌电信号特征。肘关节伸肌和屈肌分别在最大等长收缩、15°/s、30°/s、60°/s、120°/s、180°/s、240°/s条件下进行3次最大等动离心屈伸运动。以标准化的均方根振幅(RMS)和标准化的峰值力矩作为评价指标。结果:对于大学生和优秀乒乓球运动员来说,随着肘关节速度的增加,两组受试者的屈伸肌力矩都呈下降趋势,大学生表现为速度大于60°/s时伸肌力矩大于屈肌力矩(P<0.05),优秀乒乓球运动员表现为伸肌力矩低于屈肌力矩,但没有统计学差别(P>0.05)。大学生和优秀乒乓球运动员都表现为在向心收缩时不同速度下随着主动肌力矩下降,拮抗肌激活水平表现为逐渐增高,且所有线性拟合系数r2>0.7。优秀乒乓球运动员拮抗肌肱三头肌的激活水平(在MVC时:10.1%±5.2%,240°/s时:15.1%±6.6%)要显著低于普通高校大学生(MVC时:29.3%±8.8%,240°/s时:38.0%±15.1%)。而作为拮抗肌的肱二头肌激活水平在普通大学生和优秀乒乓球运动员之间没有统计学差异(P>0.05)。优秀乒乓球运动员拮抗肌/主动肌肌电活动比要显著低于普通大学生(P<0.05)。结论:与普通大学生相比,优秀乒乓球运动员肘关节拮抗肌肱三头肌的激活水平要更低,这可能是优秀乒乓球运动员对肘关节周围肌肉进行长期训练的结果。而两者拮抗肌肱二头肌激活水平没有统计学差异,其原因可能是由于两者在日常活动中肱二头肌作为拮抗肌经常为了克服地心引力受到同样的刺激造成的。  相似文献   

10.
Abstract

This study was undertaken to examine the acute effect of interferential current on mechanical pain threshold and isometric peak torque after delayed onset muscle soreness induction in human hamstrings. Forty-one physically active healthy male volunteers aged 18?33 years were randomly assigned to one of two experimental groups: interferential current group (n = 21) or placebo group (n = 20). Both groups performed a bout of 100 isokinetic eccentric maximal voluntary contractions (10 sets of 10 repetitions) at an angular velocity of 1.05 rad · s?1 (60° · s?1) to induce muscle soreness. On the next day, volunteers received either an interferential current or a placebo application. Treatment was applied for 30 minutes (4 kHz frequency; 125 μs pulse duration; 80?150 Hz bursts). Mechanical pain threshold and isometric peak torque were measured at four different time intervals: prior to induction of muscle soreness, immediately following muscle soreness induction, on the next day after muscle soreness induction, and immediately after the interferential current and placebo application. Both groups showed a reduction in isometric torque (P < 0.001) and pain threshold (P < 0.001) after the eccentric exercise. After treatment, only the interferential current group showed a significant increase in pain threshold (P = 0.002) with no changes in isometric torque. The results indicate that interferential current was effective in increasing hamstrings mechanical pain threshold after eccentric exercise, with no effect on isometric peak torque after treatment.  相似文献   

11.
A single bout of eccentric exercise induces a protective adaptation against damage from a repeated bout. The aim of this study was to determine whether this repeated bout effect is due to a change in the length-tension relationship. Twelve individuals performed an initial bout of six sets of 10 eccentric quadriceps contractions and then performed a repeated bout 2 weeks later. Eccentric contractions were performed on an isokinetic dynamometer at 1.04 rad x s(-1) with a target intensity of 90% of isometric strength at 70 degrees of knee flexion. Isometric strength and pain were recorded before and after both eccentric bouts and on each of the next 3 days. Isometric strength was tested at 30 degrees, 50 degrees, 70 degrees, 90 degrees and 110 degrees of knee flexion. On the days following the initial bout, there was a significant loss of isometric strength at all knee flexion angles except 110 degrees (bout x angle: P < 0.01). On day 2, strength averaged 86% of baseline for 30-90 degrees and 102% of baseline for 110 degrees. Strength loss and pain after the initial bout was contrasted by minimal changes after the repeated bout (pain: P < 0.001; strength: P < 0.01). The repeated bout effect was associated with a rightward shift in the length-tension curve; before the repeated bout, isometric strength was 6.8% lower at 30 degrees and 13.6% higher at 110 degrees compared with values before the initial bout (bout x angle: P < 0.05). Assuming that torque production at 110 degrees occurs on the descending limb of the length-tension curve, the increase in torque at 110 degrees may be explained by a longitudinal addition of sarcomeres. The addition of sarcomeres would limit sarcomere strain for subsequent eccentric contractions and may explain the repeated bout effect observed here.  相似文献   

12.
13.
分析比较不同级别男子跳高运动员膝关节屈伸肌群离心收缩时峰力矩特点及差异。在首都体育学院生物力学实验室,采用德国ISOMED2000等速测试仪,对8名一级男子跳高运动员和8名二级男子跳高运动员膝关节肌群进行等速离心收缩测试,测试角速度60°/s、120°/s、240°/s,指标包括峰值力矩、相对峰力矩(峰值力矩/体重)、峰值力矩屈伸比。研究结果:(1)一级跳高运动员起跳腿膝关节屈、伸肌峰力矩较二级跳高运动员有显著性差异(P<0.05);(2)平均功率随给定运动角速度的增大而增大(P<0.01);(3)离心收缩峰力矩随给定运动速度的增加无显著变化;(4)离心收缩膝关节屈伸肌群峰力矩比值为0.60~0.63之间。结论:跳高运动员膝关节肌群等速测试结果的差异是造成一、二级跳高运动员成绩差异的原因之一。  相似文献   

14.
Abstract

In this study, we wished to determine whether a warm-up exercise consisting of 100 submaximal concentric contractions would attenuate delayed-onset muscle soreness and decreases in muscle strength associated with eccentric exercise-induced muscle damage. Ten male students performed two bouts of an elbow flexor exercise consisting of 12 maximal eccentric contractions with a warm-up exercise for one arm (warm-up) and without warm-up for the other arm (control) in a randomized, counterbalanced order separated by 4 weeks. Muscle temperature of the biceps brachii prior to the exercise was compared between the arms, and muscle activity of the biceps brachii during the exercise was assessed by surface integral electromyogram (iEMG). Changes in visual analogue scale for muscle soreness and maximal voluntary isometric contraction strength (MVC) of the elbow flexors were assessed before, immediately after, and every 24 h for 5 days following exercise, and compared between the warm-up and control conditions by a two-way repeated-measures analysis of variance. The pre-exercise biceps brachii muscle temperature was significantly (P<0.01) higher for the warm-up (35.8±0.2°C) than the control condition (34.4±0.2°C), but no significant differences in iEMG and torque produced during exercise were evident between conditions. Changes in muscle soreness and MVC were not significantly different between conditions, although these variables showed significant (P<0.05) changes over time. It was concluded that the warm-up exercise was not effective in mitigating delayed-onset muscle soreness and loss of muscle strength following maximal eccentric exercise.  相似文献   

15.
Nine participants performed two bouts of a step exercise, during which the quadriceps muscle of one leg acted eccentrically. Before and after the exercise, isokinetic torque was measured over a range of knee angles to determine the optimum angle for torque. Immediately after the first bout of exercise, the quadriceps showed a significant (P < 0.05) shift of 15.6 +/- 1.4 degrees (mean +/-sx) of its optimum angle in the direction of longer lengths, suggesting the presence of damage. A drop in peak torque, together with delayed soreness and swelling, confirmed that damage to muscle fibres had occurred. After the second bout of exercise, 8 days later, the shift in optimum angle was 10.4 +/- 1.0 degrees, which was significantly less than after the first bout (P < 0.05). Other indicators of damage were also reduced. In addition, the muscle exhibited a sustained shift in optimum angle (3.4 +/- 0.9 degrees), suggesting that some adaptation had taken place after the first bout of exercise. We conclude that muscles like the quadriceps can show evidence of damage after a specific programme of eccentric exercise, followed by an adaptation response. This is despite the fact that the quadriceps routinely undergoes eccentric contractions in everyday activities.  相似文献   

16.
Electromyographic analysis of repeated bouts of eccentric exercise   总被引:1,自引:0,他引:1  
The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.  相似文献   

17.
Abstract

Knee extension isokinetic peak torque was assessed at angular velocities of 0, 30, 180, and 240[ddot]/sec, and isokinetic endurance was assessed by 50 consecutive contractions at 180[ddot]/sec in eight college age men. Also, muscle fiber type of the vastus lateralis was determined and related to isokinetic strength and fatigability. To determine the influence of initial strength on isokinetic endurance the 50 serial isokinetic contractions were assessed after subjects performed two bicycle exercise regimens designed to affect initial strength levels. Neither isokinetic peak torques (made relative to MVC or per Kg of body weight) nor the amount of strength loss over the 50 contractions correlated with fiber type. The peak torques at 180[ddot]/sec at the start of the 50 contractions differed over the three conditions (unfatigued and after the two bicycle exercise regimens), however, the amount of of strength loss over the 50 trials was similar for the three conditions. Also, the patterns of the three isokinetic fatigue curves were remarkably similar. Thus, the initial strength level across the treatments did not affect the rate of fatigue. However, when the treatment conditions were examined separately, the amount of strength loss over the 50 trials correlated significantly with initial strength. Thus, factors other than, or in addition to, fiber type and initial strength level must influence the rate of isokinetic fatigue.  相似文献   

18.
The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE). Male students performed 30 eccentric contractions (ECC) of the elbow flexors using a dumbbell set at 80% of the pre-exercise maximal isometric force (MIF). Participants were then classified into low (LR; n = 6), medium (MR; n = 6), high (HR; n = 5), and higher (HrR; n = 7) based on the increase in blood creatine kinase (CK) activity. A year later, participants repeated this exercise (ECC30). Four days after ECC30, participants performed 70 eccentric contractions (ECC70). Range of motion, MIF, upper arm circumference, soreness, and blood CK activity were measured before and up to 9 days after each bout. The change in the criterion measures following ECC and ECC30 were similar for each group. There were no further changes in all parameters after ECC70 for MR, HR, and HrR, although there was a small increase in CK after ECC70 for LR. LR showed a smaller RBE after ECC70 compared with the other groups. It is concluded that participants who exercised 1 year apart showed remarkably similar responses between the bouts. The extent of the RBE following the second bout for the LR group is less for participants who demonstrate the least evidence of muscle damage after a first exercise bout.  相似文献   

19.
The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE). Male students performed 30 eccentric contractions (ECC) of the elbow flexors using a dumbbell set at 80% of the pre-exercise maximal isometric force (MIF). Participants were then classified into low (LR; n=6), medium (MR; n=6), high (HR; n=5), and higher (HrR; n=7) based on the increase in blood creatine kinase (CK) activity. A year later, participants repeated this exercise (ECC30). Four days after ECC30, participants performed 70 eccentric contractions (ECC70). Range of motion, MFI upper arm circumference, soreness, and blood CK activity were measured before and up to 9 days after each bout. The change in the criterion measures following ECC and ECC30 were similar for each group. There were no further changes in all parameters after ECC70 for MR, HR, and HrR, although there was a small increase in CK after ECC70 for LR. LR showed a smaller RBE after ECC70 compared with the other groups. It is concluded that participants who exercised 1 year apart showed remarkably similar responses between the bouts. The extent of the RBE following the second bout for the LR group is less for participants who demonstrate the least evidence of muscle damage after a first exercise bout.  相似文献   

20.
The aim of the present study was to examine the effects of viscoelastic properties of human tendon structures during stretch - shortening cycle exercise. The elongation of tendon and aponeurosis of the medial gastrocnemius muscle of 26 participants was measured by ultrasonography while they performed ramp isometric plantar flexion up to the voluntary maximum, followed by a ramp relaxation. The relationship between estimated muscle force and tendon elongation during the ascending phase was fitted to a linear regression, the slope of which was defined as stiffness. The percentage of the area within the muscle force-tendon elongation loop relative to the area beneath the curve during the ascending phase was defined as hysteresis. In addition, maximal voluntary concentric contractions at 2.09 and 3.14 rad x s(-1) with and without prior eccentric contractions were performed. The difference in the concentric torque at equivalent joint angles with and without prior eccentric contractions (i.e. pre-stretch augmentation) was negatively correlated with stiffness (P < 0.05) and hysteresis (P < 0.05). Furthermore, there was a higher correlation between the pre-stretch augmentation and the viscoelastic properties index--that is, the sum of normalized score values of stiffness and hysteresis (P < 0.01)--than with either stiffness or hysteresis alone. The results of this study suggest that performance during stretch-shortening cycle exercise is significantly affected by the viscoelastic properties of the tendon structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号