首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
函数f(x)在x = x0 处取得极限的点称之为“极限点”,函数 f(x) 在点 x = x0 处连续的点称之为“连续点”,函数f(x)在x = x0处有导数的点称之为“可导点”,可导函数y = f(x)使f′(x0) = 0 的点 x0 叫做函数f(x)的“驻点”,函数f(x)在x = x0 处取得极值(极大值或极小值) 的点称之为“极值点”,函数f(x)在x = x0 处取得最值(最大值或最小值)的点称之为“最值点”.函数中这五类点很容易混淆,理清它们之间的关系对函数的“极限”和“导数”学习很有帮助.一、函数的“极限点”与“连续点”的关系当自变量x无限地趋近常数x0(但 x不等于x0)时,若…  相似文献   

2.
几乎所有的微积分教科书都论述了下列复合函数的连续性定理: 设函数y=g(z)在z_0点连续,且函数z=f(x)在点x_0连续,z_0=f(x_0),又设复合函数y=g[f(x)]在点x=x_0的某一领域内是有定义的,则复合函数y=g[f(x)]必在x_0处连续。上述定理告诉我们:连续函数的复合函数仍旧是连续函数。现在问:关于复合函数的极限问题,也有类似的结论吗? 为回答这个问题,我们给出如下定理。  相似文献   

3.
高中课本中导函数定义:如果函数y=f(x)在开区间(a,b)内的每点处都有导数,此时对于每一个x∈(a,b),都对应着一个确定的导数f(′x),从而构成一个新的函数f(′x),称这个函数f(′x)为函数y=f(x)在开区间内的导函数.f(′x)=y′=limΔx→0ΔyΔx=limΔx→0f(x Δx)-f(x)Δx.那么函数y  相似文献   

4.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

5.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

6.
我们知道,函数y=f(x)在点x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.由这个定义出发,我们可以发现,  相似文献   

7.
课本中给出了奇偶函数的定义:f(x)是奇函数f(-x)=-f(x),f(x)是偶函数f(-x)=f(x).它们的图象特征是:奇函数的图象关于原点对称,偶函数的图象关于y轴对称.关于原点(y轴)对称的函数是奇(偶)函数.把以上结论加以推广:就有:命题1:设函数y=f(x)的定义域为R,且满足条件f(a x)=f(b-x),则函数y=f(x)的图象关于直线x=a2 b对称.命题2:定义在R上的函数y=f(x)满足条件f(x a)=-f(b-x),则y=f(x)的图象关于点a2 b,0对称.这两个命题是关于同一个函数图象本身的对称性,对于两个函数图象之间的对称性,有下列结论:命题3:定义在R上的函数y=f(x),函数y=f(a x)与y…  相似文献   

8.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

9.
题2019年全国II卷理科数学第20题.已知f(x)=ln x-x+1 x-1,(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x 0是f(x)的零点,证明曲线y=ln x在点A(x 0,ln x 0)处的切线也是曲线y=e x的切线.该试题中,函数y=ln x在函数f(x)的零点处的切线为曲线y=ln x与y=e x的公切线,那么,函数y=ln x和y=e x的图象分别与函数y=x+1 x-1的图象交点与它们的公切线有何关系?一般地,指数函数y=a x和对数函数y=log ax(a>0且a≠1)图象的公切线又有何相应的结论?本文对此加以探索.  相似文献   

10.
我们知道,当C>0,且C≠n2,n∈N,必须通过计算器才能得出C的近似值,那么这些近似值是如何得出,对于解决其他问题有什么帮助?如图,已知函数f(x)在互异的两个点x0,x1处的函数值f(x0)=y0,f(x1)=y1而想估计函数在另一点ξ处的函数值,最自然的想法是作过点(x0,y0)和(x1,y1)点的直线y=L1(x),用L1(ξ)作为准确值f(ξ)的近似值.如果认为这样做误差很大,而且还可以得到f(x)在另一点处的函数值,这样可以构造过点(xk,y k),(K=0,1,2)的二次曲线y=L2(x).用L2(ξ)作为准确值f(ξ)的近似值.如上图.那么如何求出L1(x)及L2(x)?1插值法已知y0=f(x0),y1=f(x1…  相似文献   

11.
函数y=f(x)在点x0处的导数的几何意义就是曲线y=f(x)在点P(x0,y0)处的切线的斜率.导数的几何意义把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体.因此,用导数解决与切线有关的问题将是高考命题的一个热点.下面分类解析导数几何  相似文献   

12.
高中课本中导函数定义:如果函数y=f(x)在开区间(a,b)内的每点处都有导数,此时对于每一个x∈(a,b),都对应着一个确定的导数f′(x),从而构成一个新的函数f′(x),称这个函数f′(x)为函数y=f(x)在开区间内的导函数.f′(x)=y′=lim△x→0△y/△x=lim△x→0f(x+△x)-f(x)/△x.那么函数y=f(x)与其导函数y=f′(x)有何关系?本文将用导函数自身的定义来探讨它们之间的联系并加以应用.……  相似文献   

13.
数学科     
例一:已知幂函数图像过点M(2,1/4),则f(0.5)=( )(A)2~(1/2)/2 ;(B)1/4;(C)4;(D)2~(1/2)[评析]这道题考查了函数的基本概念,初等函数的解析表达式,当x=x_0时求函数值y_0=f(x_0),及待定系数法等重要内容.解答本题首先要清楚幂函数的解析式是y=x~n,其次对函数图像的概念:“设函数y=f(x)定义在数集A上,则坐标平面上的点集{(x,y)|x∈A,y=f(x)}称为函数y=f(x)的图像”有明确的认识.一般的函数图像过点M(x_0,y_0).可以理解为x=x_0时y=y_0由已知幂函数  相似文献   

14.
1导数的概念和几何意义1.1概念如果y=f(x)在开区间I内的每点处都可导,就称该函数在I内可导;在定义区间I内,当x=x0,f(x0)是一个确定的数。这样,当x变化时,f′(x)便是x的一个函数  相似文献   

15.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

16.
函数y=f(x)在点x0处的导数f′(x0)的几何意义,表示曲线y=f(x)在点x0处的切线的斜率,本文运用其结论及切线、法线、切线射影和法线射影的概念来求作圆锥曲线的切线。  相似文献   

17.
一、导数的几何意义 函数y=f(x)在点P(x0,y0)处的导数f'(x0)表示函数y—f(x)在x=x0处的瞬时变化率,导数f’(x0)的几何意义就是函数y=f(x)在P(x0,y0)处的切线的斜率,其切线方程为y—y0=f’(x0)(x—x0)。  相似文献   

18.
一、导数概念及其经济意义 导数的定义:设y=f(x)在x_0点的某领域内有定义,极限(若存在)表示函数y=f(x)在x_0点的导数,记为f(x_0)。 又由极限性质可知:(→0时)所以,即x·△x比△x是高阶无穷小,于是可以用f(x_0)△x近似代替△y, 记△y≈f(x_0)△x 当△x=l时,△y≈f(x_0) 意即f(x_0)近似地表示在x_0的基础上自变量改变一个单位时,△y的改变量。  相似文献   

19.
<正>一、求极值利用可导函数求函数极值的基本方法:设函数y=f(x)在点x_0处连续且f'(x)=0。若在点x_0附近左侧f'(x)>0,右侧f'(x)<0,则f(x_0)为函数的极大值;若在点x_0附近左侧f'(x)<0,右侧f'(x)>0,则f(x_0)为函数的极小值。  相似文献   

20.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号